
Event-Predicate Detection in the Debugging

of Distributed Applications

by

Christian Eugene Jaekl

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1996

c
Christian Eugene Jaekl 1996



I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-

tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

ii



The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

iii



Abstract

Trends in the development of computer hardware are making the use of distributed

systems increasingly attractive. The collection of event-trace data and the construc-

tion of process-time diagrams can provide a useful visualization tool. In practical

situations, however, these diagrams are too large for users to �nd them compre-

hensible. The ability to detect and locate arbitrary (complex) predicates within an

event trace can help to alleviate this problem.

This thesis enumerates �ve classes of problems that a successful event- detection

strategy should be able to identify: phase transitions, mutual- exclusion violations,

subroutines, communication symmetry, and performance bottlenecks. Some pre-

vious e�orts in this area o�er an expressivity which is close to that required to

meet these goals, but are hampered by an insu�cient understanding of the par-

tial order which underlies causality in a distributed-execution trace. This work

de�nes a partial-order precedence relationship for compound events, and extends

two timestamping algorithms to support it.

A new syntax for event-predicate de�nition, which comes closer to ful�lling the

aforementioned framework than any of the previous e�orts, is presented. Finally, a

prototypical implementation, within Taylor's Partial-Order Event Tracer (POET),

is described, issues encountered during its construction are discussed, and its per-

formance is evaluated.

iv



Acknowledgements

First and foremost, I would like to thank my supervisor, David Taylor, a charming,

witty and ever-helpful guide to the academic experience|David, it has been a

pleasure. I also owe a signi�cant debt of gratitude to my readers, Peter Buhr

and Thomas Kunz, for their careful attention to detail and thoughtful suggestions.

Further thanks are due to James Black, Michael Nidd, Raoul Medina, and to many

students at the University of Waterloo, for their input, suggestions, and general

assistance; this work has been aided greatly by the atmosphere which all of these

people have helped to foster.

I would like to thank my parents; without their prodding, I might never have

embarked on this experience in the �rst place, and I would have missed out on a

great deal.

Finally, I gratefully acknowledge the �nancial support of International Busi-

ness Machines Corporation, the Information Technology Research Centre, and the

Department of Computer Science at the University of Waterloo.

v



Contents

1 Introduction 1

1.1 The Case for Distributed Systems . . . . . . . . . . . . . . . . . . . 1

1.2 Development Di�culties . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Causality and Compound Events 7

2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 De�ning a Partial Order . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Timestamping Exclusively Asynchronous Communication . . . . . . 10

2.3.1 Fidge/Mattern Timestamps . . . . . . . . . . . . . . . . . . 10

2.3.2 Summers Timestamps . . . . . . . . . . . . . . . . . . . . . 12

2.4 Extensions for Synchronous Communication . . . . . . . . . . . . . 14

2.4.1 Fidge Synchronous-Communication Timestamps . . . . . . . 14

2.4.2 Summers Synchronous-Communication Timestamps . . . . . 15

2.5 The Meaning of Precedence for Compound Events . . . . . . . . . . 17

vi



2.6 \Recommended" Precedence Relation . . . . . . . . . . . . . . . . . 19

2.6.1 Using Summers Timestamps . . . . . . . . . . . . . . . . . . 20

2.6.2 Using Fidge Timestamps . . . . . . . . . . . . . . . . . . . . 21

2.7 \Alternative" Precedence Relation . . . . . . . . . . . . . . . . . . . 24

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Event-Detection Strategies 27

3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 General Intent . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Classes of Problems . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Previous Work on Event Recognition . . . . . . . . . . . . . . . . . 30

3.2.1 Bates-Wileden Event-De�nition Language (EDL) . . . . . . 31

3.2.2 Chandy-Lamport Distributed Snapshots . . . . . . . . . . . 32

3.2.3 Miller-Choi Predicates . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Haban-Weigel Predicates . . . . . . . . . . . . . . . . . . . . 34

3.2.5 Hseush-Kaiser Data-Path Expressions . . . . . . . . . . . . . 37

3.2.6 Garg-Waldecker Weak Conjunctive Predicates . . . . . . . . 38

3.2.7 Chiou-Korfhage Event-Normal-Form Predicates . . . . . . . 39

3.2.8 Basten's PLR Parsing . . . . . . . . . . . . . . . . . . . . . 42

3.2.9 Seuren Communication Patterns . . . . . . . . . . . . . . . . 43

3.3 Proposed Predicate-Speci�cation Mechanism . . . . . . . . . . . . . 44

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



3.3.2 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . 54

4 Implementation 59

4.1 POET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.3 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 ASCII Representation . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Scrolling to a Match . . . . . . . . . . . . . . . . . . . . . . 69

4.2.5 Colouring a Match . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.6 Process Clustering and Event Abstraction . . . . . . . . . . 72

4.2.7 Relevancy Restrictions . . . . . . . . . . . . . . . . . . . . . 72

4.3 A Sample Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Performance 83

5.1 Space Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Time Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 The Overriding Performance Factor . . . . . . . . . . . . . . 88

viii



5.2.2 Test Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Improving Running Time . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusions and Future Directions 109

6.1 Summary of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 A Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 112

ix



List of Tables

4.1 ASCII equivalences for predicate notation . . . . . . . . . . . . . . 65

4.2 The basis for relevancy restrictions . . . . . . . . . . . . . . . . . . 74

5.1 Contents of a parse-tree node . . . . . . . . . . . . . . . . . . . . . 85

5.2 Contents of a TS EVENT structure . . . . . . . . . . . . . . . . . . 86

5.3 AlarmClock program: traces and events . . . . . . . . . . . . . . . . 90

5.4 Predicates used for performance analysis . . . . . . . . . . . . . . . 95

5.5 Test data: traces and events . . . . . . . . . . . . . . . . . . . . . . 96

5.6 CPU seconds used and real time elapsed . . . . . . . . . . . . . . . 98

5.7 Performance with relevancy restrictions disabled . . . . . . . . . . . 100

5.8 Performance with relevancy restrictions enabled . . . . . . . . . . . 100

x



List of Figures

2.1 Clock-drift example . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Process-time diagram discussed in Example 2 . . . . . . . . . . . . 10

2.3 (Exclusively asynchronous) communication and Fidge timestamps . 11

2.4 (Exclusively asynchronous) communication and Summers timestamps 13

2.5 Fidge timestamps with synchronous communication . . . . . . . . . 16

2.6 Summers timestamps with synchronous communication . . . . . . . 17

2.7 Counterexample: Theorem 4 with Fidge time stamps . . . . . . . . 23

3.1 Example Haban-Weigel predicate . . . . . . . . . . . . . . . . . . . 35

3.2 Hseush-Kaiser event recognizer . . . . . . . . . . . . . . . . . . . . 38

3.3 Chiou and Korfhage's distributed ENF-predicate recognizer . . . . . 40

3.4 Producer-consumer race problem . . . . . . . . . . . . . . . . . . . 41

3.5 Sample communication patterns . . . . . . . . . . . . . . . . . . . . 44

3.6 A generating grammar for the proposed predicate language . . . . . 46

3.7 Output trace discussed in Example 7 . . . . . . . . . . . . . . . . . 48

3.8 �C++ trace fragment referred to in Example 9 . . . . . . . . . . . 49

xi



3.9 Producer-consumer race revisited . . . . . . . . . . . . . . . . . . . 50

3.10 A thread blocks while waiting to acquire a lock . . . . . . . . . . . 52

3.11 Three threads are simultaneously blocked . . . . . . . . . . . . . . . 53

3.12 Producer-consumer shutdown . . . . . . . . . . . . . . . . . . . . . 56

3.13 A child (immediately) spawns another child . . . . . . . . . . . . . 58

4.1 The POET architecture . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 POET display with clustering and event abstraction . . . . . . . . . 64

4.3 A simple parse tree, representing the expression (A! B) k C . . . 65

4.4 Parse tree for the expression a
b:c
�! d:e . . . . . . . . . . . . . . . . 66

4.5 The front of a compound event . . . . . . . . . . . . . . . . . . . . 70

4.6 Relevancy example . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 The POET display on startup . . . . . . . . . . . . . . . . . . . . . 79

4.8 The Functions menu . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Execution trace for the AlarmClock program . . . . . . . . . . . . . 80

4.10 Selecting a predicate-speci�cation �le . . . . . . . . . . . . . . . . . 81

4.11 The �rst match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.12 After the last match . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 (Partial) output from `prof dbg session' . . . . . . . . . . . . . . 92

5.2 (Partial) output from the `ps' command . . . . . . . . . . . . . . . 93

5.3 Observed execution times correlate well with CPU seconds . . . . . 97

xii



5.4 Predicates I through VI, relevancy restrictions disabled . . . . . . . 102

5.5 Predicates I through VII, relevancy restrictions disabled . . . . . . . 103

5.6 Predicates I through VII, relevancy restrictions enabled . . . . . . . 104

5.7 Combined data, with and without relevancy restrictions . . . . . . . 105

xiii



Chapter 1

Introduction

1.1 The Case for Distributed Systems

\It is not to be expected that the necessary [parallel] programming

techniques will be worked out overnight. Much experimenting remains

to be done. After all, the techniques that are commonly used in pro-

gramming today were only won at the cost of considerable toil several

years ago. In fact the advent of parallel programming may do some-

thing to revive the pioneering spirit in programming, which seems at the

present to be degenerating into a rather dull and routine occupation."

|S. Gill, 1958 [18]

The concept of parallel computation is not a new one. To give but two examples,

the \Pilot ACE" (1953) had the ability to run multiplication and division operations

independently of the control unit [42], and the CDC 6600 (1964) could execute as

many as ten instructions in parallel [36, page 20]. Indeed, all modern operating

1



CHAPTER 1. INTRODUCTION 2

systems support some form of concurrency, often going to great lengths to simulate

parallelism on a uniprocessor.

Why, then, is programming still viewed as a fundamentally sequential operation?

This is a product of the mind-set into which the available languages have trained

programmers [2], and (perhaps more importantly) the fact that, until recently,

there were signi�cantly more users than processors. A quarter century ago, Grosch

observed that the computational power of a processor varied as the square of its

price; under these conditions, it was best to invest in the largest single processor one

could a�ord [37, page 3]. In the past decade, the limited speed of electric current


ow, and the di�culties inherent in heat dissipation, have slowed the advance of

superprocessors; at the same time, economies of scale have drastically reduced the

price of integrated circuits. \Grosch's law" has been turned on its head, and future

price/performance gains will require substantial parallelism.

1.2 Development Di�culties

Nevertheless, the great wave of distributed applications, which has been predicted

to be imminent for four decades, remains conspicuously absent. Why is this so?

It is inherently more di�cult to manage a team of workers, orchestrating their

set of actions to accomplish a uni�ed goal, than it is to give directions to a sin-

gle person; likewise, concurrent applications will always be more di�cult to con-

ceptualize, implement, and debug, than their sequential counterparts. With the

aforementioned economic impetus, a number of techniques have been developed to



CHAPTER 1. INTRODUCTION 3

assist the construction of concurrent programs.1 At this point, however, a corre-

sponding degree of improvement has not been seen in the techniques and tools for

debugging concurrent applications once they have been constructed.

When debugging a sequential application, the technique of choice is to repeat-

edly run the program, within a source-level debugger, under conditions which repro-

duce the error; by setting breakpoints, reviewing trace output, stepping through the

code and examining the contents of variables, the focus of the search is iteratively

narrowed until the source of the error is located. Recent work addresses a number

of the di�culties inherent in extending this process to a distributed situation:

� No global clock. Applications may be spread across several processors, each

of which has its own local clock that cannot maintain perfect synchronization

with the other clocks in the system; thus, there is no available global time to

reveal the global order of execution. This issue can be addressed by the use

of logical clocks to maintain a partial order, and is discussed in Chapter 2.

� Trace-output format. Trace information is di�cult to convey. Combin-

ing all the output into a sequential listing yields a linearization that conveys

the impression of a total ordering to which the actual execution was not

constrained; separating traces on a per-process basis fails to convey infor-

mation about the partial order which is present. The best solution proposed

thus far involves the construction of process-time diagrams; Figure 2.2, on

page 10, provides an example. Parallel lines indicate the sequential execution

local to each trace; symbols on the lines (circles in this example) indicate

events within that process; arrows indicate communication, with the arrow-

1These include, but are by no means limited to, remote procedure calls, conditional critical

regions, and monitors.



CHAPTER 1. INTRODUCTION 4

head pointing at the receive event within the pair. One can easily ascertain

the causality relationship between any two events by examining such a dia-

gram. If there is a directional path between the two events, then the origin

happened before the destination; otherwise, there is no causal relationship.

The Partial-Order Event Tracer (POET), developed by the Shoshin research

group at the University of Waterloo, can automatically construct such a dia-

gram (see Section 4.1).

� Non-deterministic execution. The relative speed of execution of separate

processes is unpredictable, and the application is likely to be faced with re-

source contention from other programs on the system. Thus, separate runs

on the same input do not necessarily produce the same output; this nondeter-

minism can present a novel problem when attempting to iteratively \zero in"

on a bug. The best available solution is to �rst capture an execution trace

that contains the error condition, and then replay that execution with the

aid of a replay facilitator, which constrains the application to maintain the

observed partial order on inter-process communication. Yong [43] provides a

replay mechanism that is both target-independent and portable.

� Implementation details. Khouzam [23] extends this replay facility to pro-

vide a distributed analogue of single-stepping, and Yu [45] demonstrates how

a traditional (sequential) source-level debugger can be connected to a process

within a distributed system, which is halted at a breakpoint, allowing the

user to examine data structures.

This thesis attempts to address three open problems in the extension of the

sequential-debugging paradigm to distributed applications.



CHAPTER 1. INTRODUCTION 5

� Searching through large traces. For non-trivial applications, the event

trace generates a process-time diagram which is so huge that it is extremely

di�cult to peruse and to locate relevant sections of interest in the course

of debugging. Some sort of search feature is needed; it should be roughly

analogous to that provided within a text browser, but adapted to handle the

partial order inherent in such a trace.

� Conditional breakpoints. A sequential debugger normally provides a di-

rective to break execution if a given condition (e.g., x = 7) is satis�ed; this

grants the user an extra degree of speci�city, allowing rapid examination of a

certain section of the program in some speci�c intermediate state.

� Global assertions. If an application enters a state that has not been fore-

seen by the programmer, it may be preferable for it to halt with an error

message rather than to continue and to produce behaviour that is likely to be

incorrect. Developers often install this type of safeguard by using assertions;

in a distributed application, such an assertion may involve a condition spread

across several processes.

The astute reader should realize that these are three variations on a common

theme. What is needed is a mechanism to de�ne and detect patterns of execution

within a distributed system.

1.3 Thesis Overview

This thesis describes a strategy for the de�nition and detection of predicates which

can meet the aforementioned goals. Chapter 2 discusses the logical time relating



CHAPTER 1. INTRODUCTION 6

primitive events in distributed execution traces and the vector timestamps which are

used to describe it; these timestamps (and their associated algorithms) are extended

to deal with compound events, a prerequisite for any sound predicate-detection

strategy. Chapter 3 reviews previous developments in predicate-detection, assesses

their strengths and weaknesses, and presents a new predicate-de�nition language.

Chapter 4 describes a prototypical implementation of this language, and discusses

the more interesting di�culties which were encountered in its construction; an ex-

ample post-mortem debugging session illustrates the nature of the functionality

which it currently provides. Chapter 5 discusses the factors which limit the perfor-

mance of the current implementation, and sketches avenues which might improve

the speed of predicate-recognition. Finally, the sixth chapter summarizes the con-

tributions of the thesis and outlines possible lines for future exploration.



Chapter 2

Causality and Compound Events

2.1 The Problem

In order to make sense of trace information, it is essential that the temporal rela-

tionships among the events in the processes be observable. The obvious solution,

stamping each event with the actual (scalar) global time, presents a unique dif-

�culty in a distributed system. Di�erent processes1 may not have access to the

same clock, and di�erent clocks are unlikely to remain in precise agreement on the

current time.

Example 1 (Clock Drift)

Consider two tasks running on two separate processors, each of which has

its own local clock (c1 and c2 respectively); even if c1 and c2 are perfectly

1Here, the term process designates a single line on a process-time diagram. This may, in fact,

be a thread, process, task, semaphore, monitor, or TCP stream, depending on the terminology

used by the target system and the granularity of the communication data being collected.

7



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 8

2c
t s + 2st+ 1

+ 4

st + 3st

1c
st + 1st t + 2s st + 3 t s

Figure 2.1: Clock-drift example

synchronized at some time ts, any di�erence in their rates guarantees that

the two clocks will drift apart signi�cantly after that point. Eventually, a

message sent from the �rst process to the second appears to arrive before it

departs (see Figure 2.1).

Clock-synchronization algorithms can mitigate this problem. However, since

all such algorithms are limited by inter-processor-communication delays [27], they

cannot achieve su�cient accuracy for trace-information analysis. In fact, a total

ordering of events is neither required nor desired. What is really desired here is a

mechanism to describe the causal structure of a distributed execution.

2.2 De�ning a Partial Order

Lamport [26] recognized that it is sometimes impossible to determine a strict tem-

poral ordering for two events in a distributed system; thus, event traces necessarily

form a partial order. Lamport de�ned the happened before relation as follows:



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 9

De�nition 1 (Sequential composition)

Let a, b and c be events. a! c (a \happened before" c) i�

�� a and c are events in the same process and a comes before c, or

� a is the transmission of a message, and c is the receipt of that transmis-

sion, or

� a! b and b! c

This is often referred to as the causality relationship because a! b implies

that it is possible for a to causally a�ect b. If two events are not causally related,

then they are considered to be concurrent.

De�nition 2 (Concurrent composition)

Let a and b be events. a k b (a and b are \concurrent") i� :(a ! b) and

:(b! a).

Example 2

In the process-time diagram shown in Figure 2.2, intra-process time 
ows

from left to right; i.e., a ! b ! c ! d and e ! f ! g ! h. Also, since f

is a send event, and c is the corresponding receive, f ! c and, applying the

transitivity of the happened-before relation, e! f ! c! d. Finally, because

of the absence of any other inter-process communication, a k e, a k f , a k g,

a k h, b k e, b k f , b k g, b k h, c k g, c k h, d k g and d k h.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 10

A

B
fe g h

dcba

Figure 2.2: Process-time diagram discussed in Example 2

2.3 Timestamping (Exclusively Asynchronous

Communication)

2.3.1 Fidge/Mattern Timestamps

Fidge [14, 15, 16] and Mattern [28] separately developed the notion of vector time-

stamps, which provide a means of determining the causality relationship between

two events without consulting the communication graph. In a system with n pro-

cesses, each process p maintains a local vector clock Cp of size n; the pth component

of Cp \ticks" each time an event occurs on process p, and the other components

maintain information about the latest \known" clock values on other processes.

De�nition 3 (proc())

If a is a primitive event, then proc(a), abbreviated pa, is the (index of the)

process in which a occurs.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 11

b

h [2,2,2]

c

g

f

a [0,0,0] [1,0,0] [2,3,0]

[2,3,3]

[2,0,0]

[1,0,0]

d

[2,1,0]e

ji

[2,2,0]

[2,2,1]

Figure 2.3: (Exclusively asynchronous) communication and Fidge timestamps

Algorithm

Initialize each local clock Cp (recall that p is the ordinal identi�er for the current

process) to the zero vector, except for the pth element, which is assigned the value

(�1).

When an event a is encountered on process pa, Cpa[pa] is incremented. Then,

� if a is a send, a copy of Cpa is appended to the message being sent.

� if a is a receive from process pb, the received clock value Cpb is used to calculate

the new value of Cpa as follows:

Cpb[pb] + = 1;

8i 2 f1; : : : ; ng; Cpa[i] := max(Cpa[i]; Cpb[i]);

Once this calculation is complete, the current value of Cpa is the timestamp Ta

for event a (see Figure 2.3).

Timestamp Test

Given two timestamps Ta and Tb, the causal relationship between a and b can be

determined as follows:



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 12

Theorem 1 (Fidge/Mattern timestamp test)

Let a and b be events which occur in (not necessarily distinct) processes pa

and pb. Then a! b i� Ta[pa] < Tb[pa].

2.3.2 Summers Timestamps

Motivation

Ore [30] provides a method of assigning timestamp-like \coordinates" to the el-

ements of a partially ordered set; this produces timestamps that can be used to

determine whether a! b without any knowledge of the processes (pa; pb) to which

the events (a; b) belong. Inspired by Ore's work, Summers [35] proposed an exten-

sion to Fidge's timestamp algorithm which supports both process-based (Fidge-like)

and process-independent (Ore-like) timestamp tests.2

Algorithm

Each local clock is initialized with the vector [0, 0, . . . , 0].

When each event a is encountered, Cpa+ = 2 if the previous event in pa was a

send event, or Cpa+ = 1 otherwise. Then,

� If a is a send event, a copy of Cpa is appended to the message being sent.

2Summers' algorithm o�ers the additional property a ! a for any event a; this is, however, of

no practical concern in a debugging context.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 13

b

h [4,3,3]

c

g

f

a [1,0,0] [3,0,0] [5,5,0]

[4,6,4]

[4,1,0]

[2,0,1]

d

[4,2,0]e

ji

[4,4,0]

[4,3,2]

Figure 2.4: (Exclusively asynchronous) communication and Summers timestamps

� If a is a receive from process pb, the received value of clock Cpb (which had

been appended to the message) is used to calculate the new value of Cpa as

follows:

Cpb[pb] + = 1;

8i 2 f1; : : : ; ng; Cpa[i] := max(Cpa[i]; Cpb[i]);

Once this calculation is complete, the current value of Cpa is the timestamp Ta

for event a (see Figure 2.4).

Timestamp Tests

De�nition 4 (Vector �)

As a notational convenience, de�ne the symbol
vec

�as follows: given two vectors

A and B, both of size n, A
vec

� B i� 8i 2 f1; : : : ; ng : A[i] � B[i].

Let a and b be events which occur in (not necessarily distinct) processes pa and

pb.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 14

Theorem 2 (Summers process-independent timestamp test)

For any two events, a! b i� Ta
vec

� Tb

Theorem 3 (Summers process-based timestamp test)

a! b i� Ta[pa] � Tb[pa]

These timestamp tests are introduced, and proven correct, in Section 2.7 of [35].

Obviously, the second test (which requires only a single comparison) is faster than

the �rst one; however, the vector-comparison test has the advantage that it does

not require knowledge about which events happened in which processes.

2.4 Extensions for Synchronous Communication

\Synchronous" communication between two processes in a distributed system is a

somewhat confusing concept. In theory, both the send (say, a) and the receive (say,

b) occur simultaneously; in practice, there is a slight (but non-zero) delay between

the initiation of the transmission at a and the beginning of the reception at b. For

the purposes of event-trace-diagram construction and analysis, it is desirable to

view both a and b as the same event, with the same timestamp, which just happens

to occur in more than one process.

The aforementioned timestamping algorithms do not make provisions for syn-

chronous communication, but they can be extended to do so easily.

2.4.1 Fidge Synchronous-Communication Timestamps

Cheung [9] proposed the following adjustment to the Fidge timestamping algorithm.

Alongside the rules for dealing with (asynchronous) send and receive events, this



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 15

new rule should be inserted:

� If a is a synchronous-communication event with a partner b, then each trace

sends the other a copy of its current local clock. Each trace updates its clock

value to the vector maximum of both clocks:

8i 2 f1; : : : ; ng : Cpa[i] := Cpb[i] := max(Cpa[i]; Cpb[i]) ;

Then, each event takes that clock value (instead of the �nal value, at the end

of processing for this event) as its timestamp:

Ta := Tb := Cpa ;

Finally, both processes increment the component of their clock corresponding

to their partner's trace by one:

Cpa[pb] + = 1 ;

Cpb[pa] + = 1 ;

An example process-time diagram with timestamps generated by this algorithm is

presented in Figure 2.5.

2.4.2 Summers Synchronous-Communication Timestamps

As Summers points out [35], his timestamping algorithm can also be adjusted to

accommodate synchronous communication. This adjustment is accomplished by

stressing that the rules which deal with send and receive events in the aforemen-

tioned algorithm are to be applied only to asynchronous communication events, and

by adding a new rule to deal with synchronous send and receive events. The com-

plete algorithm is given below, with the additions for synchronous communication

set in boldface type.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 16

h

a

f

[0,0,0]

[1,0,0]

g [3,2,2]

[3,2,2]j

b

[1,0,0]d

e [2,1,0]

[2,2,1]i

[1,0,0] c [2,1,0]

[3,2,0]

Figure 2.5: Fidge timestamps with synchronous communication

Algorithm

Each local clock is initialized with the vector [0, 0, . . . , 0].

When each event a is encountered, Cpa + = 2 if the previous event in pa was an

asynchronous send event, or Cpa + = 1 otherwise. Then,

� If a is an asynchronous send event, a copy of Cpa is appended to the message

being sent, and Ta := Cpa.

� If a is an asynchronous receive from process pb, the received value of clock

Cpb (which had been appended to the message) is used to calculate the new

value of Cpa as follows:

Cpb[pb] + = 1;

8i 2 f1; : : : ; ng; Cpa[i] := max(Cpa[i]; Cpb[i]);

Then Ta := Cpa.

� If a is a synchronous-communication event with a partner b, then

each trace sends the other a copy of its current local clock. Each

trace updates its clock value to the vector maximum of both clocks:



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 17

h

[1,0,0]a

[2,0,1]

g

[4,3,3]j

[3,1,0]b

[3,1,0]d

e [3,2,0]

[3,3,2]i

c [4,1,0]

[5,4,0]f

[4,3,3]

Figure 2.6: Summers timestamps with synchronous communication

8i 2 f1; : : : ; ng : Cpa[i] := Cpb[i] := max(Cpa[i]; Cpb[i]) ;

Then, each event takes that clock value as its timestamp:

Ta := Tb := Cpa ;

� Otherwise (if the event does not involve communication), Ta := Cpa.

2.5 The Meaning of Precedence for Compound

Events

Often, in the course of analyzing the trace output from a distributed execution,

it becomes desirable to group primitive (i.e., single, observed) events into larger

conceptual units. To reduce confusion, it is conventional to denote primitive events

with lower-case letters, and composite events with capitals.

Once higher-level events have been introduced, it is useful to de�ne a precedence

(or causality) relation between them. As Kunz [24] observes, there are two obvious

(and con
icting) notions of precedence among such events:



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 18

1. A � B i� 8a 2 A : 8b 2 B : a! b.

2. A � B i� 9a 2 A : 9b 2 B : a! b.

Previous work at Waterloo [4, 5, 24] has focussed on abstracting away levels

of detail, and thus reducing the complexity of the trace output to make it com-

prehensible for a human observer, by grouping successive levels of detail into ab-

stract events. Toward that end, the latter de�nition is probably preferable, since

it indicates a precedence between two abstract events even when they are only

partially related, thus yielding a richer display. However, this relation is neither

anti-symmetric (A � B 6) :(B � A)) nor transitive (A � B ^ B � C 6) A � C),

and so it does not de�ne a partial order.

The �rst de�nition avoids these di�culties. It also possesses the desirable prop-

erty that if A � B, then all components of A are guaranteed to have completed

execution before the �rst component of B begins; thus, A � B guarantees that no

race condition exists between A and B.

Finally, on a more pragmatic note, the �rst de�nition poses less of an implemen-

tation challenge than the second; while both require two timestamps to correctly

determine the precedence between arbitrary compound events, the latter requires

either a timestamp in reverse-vector time (which makes the on-line monitoring of

applications computationally infeasible) [4] or a substantial amount of additional

computation involving forward timestamps [5]. Kunz et al. [5, 24] circumvent this

di�culty by restricting the composition of their \abstract" events to convex sets,

but this is too much of a limitation to impose on event-predicate de�nitions.3

3As will be discussed below, a literal interpretation of the second precedence de�nition (i.e.,

an event-by-event comparison) is feasible, so long as the number of primitive events per predicate

remains small.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 19

On balance, this author recommends that users be encouraged to employ the

compound-precedence relation given by the �rst de�nition, but that, in the interest

of maintaining the greatest possible semantic expressiveness, that the other relation

should also be made available, with the caveat that its use may cause signi�cant

performance degradation.

2.6 \Recommended" Precedence Relation

De�nition 5 (Precedence for Compound Events)

Let A and B be compound events. Then A! B i� 8a 2 A : 8b 2 B : a! b.

De�nition 6 (Concurrency for Compound Events)

A k B i� :(A! B) ^ :(B ! A).

De�nition 7 (Front Timestamp of a Compound Event)

Let A represent a compound event; then the front timestamp4 of A, TA:front,

is de�ned as follows: 8i, the ith component of the vector TA:front, TA:front[i]

= min
a2A

Ta[i].

De�nition 8 (Back Timestamp of a Compound Event)

The back timestamp of A is de�ned in a similar manner: 8i : TA:back[i] =

max
a2A

Ta[i]

Corollary 1

Notice that, if A = fag (i.e., the compound event is composed of a single

primitive event), then TA:front = TA:back = Ta, the conventional primitive-

event timestamp; compound events are a superset of primitive events.

4This concept and the front/back naming convention were introduced by Basten [4].



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 20

A timestamp-based compound-precedence test can be achieved by extending any

arbitrary primitive-event timestamping scheme. This thesis introduces an imple-

mentation based on Fidge timestamps but, �rst, considers the conceptually simpler

problem of constructing such a test using Summers timestamps.

2.6.1 Using Summers Timestamps

The availability of a process-independent precedence test makes Summers' time-

stamping scheme conceptually attractive; based on it, one can construct a com-

pound timestamp test, using these front and back timestamps, which does not

need to know which processes are involved in the events being compared.

Theorem 4 (Summers-Based Compound Timestamp Test)

Let A, B be compound events, then A! B i� TA:back
vec

� TB:front.

Proof:

Start with the left-hand side.

A! B

compound precedence, De�nition 5

, 8a 2 A : 8b 2 B : a! b

Summers process-independent timestamp test, Theorem 2

, 8a 2 A: 8b 2 B : Ta
vec

� Tb

De�nition 4 (
vec

�)

, 8i : 8a 2 A : 8b 2 B : Ta[i] � Tb[i]

, 8i : max
a2A

Ta[i] � min
b2B

Tb[i]

De�nitions 7 and 8 (front and back timestamps)

, 8i : TA:back[i] � TB:front[i]



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 21

De�nition 4

, TA:back
vec

� TB:front

which is the right-hand side. Since each step of the above reasoning

involves a bidirectional implication, the proof is complete. 2

Notice that, by Corollary 1, Theorem 4 still holds if one (or both) of the events

involved is composed of a single primitive event.

One drawback of the above timestamp test is that it requires up to n compar-

isons to determine the precedence relation. By applying Theorem 3, this can be

reduced to a single comparison when the left operand is a primitive event.

Theorem 5 (Special-Case Optimization of Theorem 4)

If a is a primitive event which occurs on process pa, and B is a compound

event, then a! B i� Ta[pa] � TB:front[pa].

Proof:

a! B

, 8b 2 B : a! b

Summers process-based timestamp test, Theorem 3

, 8b 2 B : Ta[pa] � Tb[pa]

, Ta[pa] � min
b2B

Tb[pa]

, Ta[pa] � TB:front[pa] 2

2.6.2 Using Fidge Timestamps

It is tempting to think that the result from Theorem 4 might also be applicable with

Fidge timestamps, substituting < for �. However, as Example 3 illustrates, that

hypothetical timestamp test would lead to incorrect conclusions. The appropriate



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 22

timestamp test for use with a Fidge-based system requires a di�erent compound

timestamp in place of the back timestamp TA:back given in De�nition 8. To calcu-

late this timestamp, an extra bit-vector of information, describing which processes

contain events which are members of A, must either be maintained along with the

timestamp, or calculated at comparison time.

De�nition 9 (active())

Given a compound event A, active(A) := fi 2 Z j 9a 2 A : i = proc(a)g,

i.e., active(A) is the set of all processes which contain at least one component

primitive event of A.

De�nition 10 (active <)

As a notational convenience, de�ne the symbol
act
< as follows: TA

act
< TB i�

8i 2 active(A) : TA[i] < TB[i].

Example 3 (Counterexample: Theorem 4 with Fidge timestamps)

Theorem 4, with the naive substitution of < for �, does not work with Fidge

timestamps. Using the trace shown in Figure 2.7, let A := fa; cg and B := fbg;

then, TA:front = [0; 0; 0], TA:back = [1; 2; 1] and TB:front = TB:back = [1; 2; 2].

Notice that A ! B, but TA:back[0] = TB:front[0] = 1, so 9j : :(TA:back[j] <

TB:front[j]).

De�nition 11 (Metron Timestamp)

Given a compound event A, its metron timestamp,5 TA:metron, is de�ned

5The name is derived from the time-honored concept of the �����o�
)

����� �o�; 8i 2 active(A) :

TA:front[i] � TA:metron[i] � TA:back[i], and it is the \best," or \most appropriate," one for the

purpose at hand. See Horace, Odes, II, 10.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 23

b

(1, 2, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 0)

(1, 2, 2)

(1, 2, 1)

c

a

Figure 2.7: Counterexample: Theorem 4 with Fidge time stamps

as follows:

TA:metron[i] :=

8>><
>>:

max
a2A; pa=i

Ta[i]

�1 otherwise

Theorem 6 (Fidge-Based Timestamp Test for Compound Events)

Given two compound events A and B, then A! B i� TA:metron

act
< TB:front.

Proof:

A! B

, 8a 2 A : 8b 2 B : a! b

, 8a 2 A : 8b 2 B : Ta[pa] < Tb[pa]

, 8a 2 A : Ta[pa] <
�
min
b2B

Tb[pa]
�

, 8a 2 A : Ta[pa] < TB:front[pa]

, 8i 2 active(A) :
�

max
a2A; pa=i

Ta[i]
�
< TB:front[i]

, 8i 2 active(A) : TA:metron[i] < TB:front[i]

, TA:metron

act
< TB:front 2

Corollary 2

A! B i� 8i : TA:metron[i] < TB:front[i].



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 24

Proof:

A! B , 8i 2 active(A) : TA:metron[i] < TB:front[i]V
8i 2 (f1; : : : ; ng n active(A)) : TA:metron[i] = �1 ^ TB:front[i] � 0

) A! B , 8i 2 f1; : : : ; ng : TA:metron[i] < TB:front[i] 2

2.7 \Alternative" Precedence Relation

As has been discussed above (see page 18), it is arguably desirable to provide the

user with the option of using the following \alternative" de�nition for compound

precedence:

De�nition 12 (Alternative Precedence for Compound Events)

A; B i� 9a 2 A : 9b 2 B : a! b.

This naturally gives rise to a new de�nition of compound concurrency.

De�nition 13 (Alternative Concurrency for Compound Events)

A ooB i� :(A; B) ^ :(B ; A).

Corollary 3

A ooB i� 8a 2 A : 8b 2 B : :(a! b) ^ :(b! a).

Corollary 4

A ooB i� 8a 2 A : 8b 2 B : a k b.

As has already been mentioned, it is computationally expensive to compute

timestamps for this sort of compound-event precedence test. Primitive events,

however, can be timestamped reasonably quickly, and the determination of prece-

dence between two arbitrary individual events requires a maximum of two integer



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 25

comparisons. Thus, for reasonably small compound events, the \brute force" ap-

proach can determine the precedence between two speci�c compound events in a

reasonable length of time.

Algorithm 1 (Determining Alternative Precedence)

function AltPrecedes (A;B)

for each a 2 A

for each b 2 B

if not (a! b)

/* :(a! b)) :(A; B) */

return false ;

return true ;

The running time of this algorithm is, obviously, O(jAj � jBj), where jAj denotes

the number of primitive events contained within A.

Nonetheless, as is discussed in Section 4.2.7, the nature of this relationship

makes it extremely di�cult to restrict the search for partner candidates of a possible

sub-match to a relevant subset of the event-trace data. Thus, the use of this

de�nition of compound precedence within a complex predicate-speci�cation does

pose a signi�cant performance problem.

2.8 Summary

Building on Lamport's notion of a precedence relationship, Fidge and Summers have

both developed timestamps which permit the rapid determination of the precedence

relation between two arbitrary primitive events. Extending those mechanisms, this

chapter presents two alternative de�nitions of precedence for compound events.



CHAPTER 2. CAUSALITY AND COMPOUND EVENTS 26

E�cient timestamp mechanisms are developed and proven correct for the �rst

of these compound precedence relations; its use is recommended. A fast-running

implementation for the second relation is an elusive goal and may well be unattain-

able; this author suggests that users should be given the option of using it, with

the caveat that it might hinder performance.



Chapter 3

Event-Detection Strategies

3.1 Objectives

3.1.1 General Intent

On a high level, the objective of an event-detection strategy is to address the open

problems enumerated in Section 1.2.

First, as its name implies, such a strategy ought to be able to answer the ques-

tion, \Has x occurred?" This ability could be used to assess what stage a complex

computation (e.g., the Cholesky factorization of a matrix) has reached and, thus,

to extrapolate how much of the calculation remains to be performed. It could also

serve to trigger actions conditionally (e.g., \If x has happened, then do y"), in-

cluding the conditional breakpoints mentioned on page 4, and, on a related note,

to provide a form of global assertion (\If x, y, or z happens, then output an error

message and/or abort the computation").

Also, such a strategy should o�er an e�ective means of searching for a particular

27



CHAPTER 3. EVENT-DETECTION STRATEGIES 28

compound event within the massive process-time diagram which a typical event

trace of a distributed application produces, o�ering a fast and e�ective way to

locate and examine relevant sections within the display produced by a tool such as

POET.

3.1.2 Classes of Problems

Stepping down a level, however, the problem becomes somewhat murkier. What

sort of compound events is it desirable, or even useful, to detect? Any attempt to

answer that question now can only be an incomplete guess. Just as the 1977 business

plan for Apple Computer Corporation failed to identify the potential markets for

and uses of their new personal computer,1 the potential applications of distributed

systems remain largely uncharted territory, and the questions for which developers

and administrators of such systems are likely to seek answers are not yet clear.

From a pragmatic point of view, the best course of action at this juncture is to

provide people with a sample tool, assess its strengths and weaknesses on the best

available facsimile of a large distributed application, and then embark on a process

of iterative re�nement. It may, nevertheless, be constructive to provide a tentative

list of problems and conditions whose detection is desirable; while this list will most

likely prove to be incomplete, it should at least provide a framework within which

to evaluate and attempt to improve upon various existing event-detection methods.

1They \decided to aim for three market segments: the computer hobbyists who were already

committed to buying computers; professionals such as doctors and dentists, who had the spare cash

to buy gadgets and the intellectual skills to appreciate computers; and the home security/control

market, where a computer could conceivably run sprinklers, burglar alarms, lights, and garage

door openers" [44, page 138].



CHAPTER 3. EVENT-DETECTION STRATEGIES 29

1. Phase Transitions Perhaps the most obvious type of global event which one

may wish to detect is that wherein a distributed computation enters a new,

distinct, and stable phase or state. This involves a condition which, once it

becomes true, remains true inde�nitely. Examples include the termination

of a computation (all processes have exited), deadlock, or the loss of some

necessary (and, in theory, continually present) commodity, such as the token

on a token ring. While far from trivial [19], this problem has been extensively

studied, and a reasonable (centralized) algorithm to detect such global events

is available [8].

2. Mutual-Exclusion Violations A plethora of algorithms has been developed

to provide mutual exclusion across a distributed system [7], [37, pages 134-

140]. In general, such algorithms are quite complex and, thus, prone to errors

of implementation; those of lower complexity may, in certain cases (which are

often argued to be highly unlikely) fail to guarantee the required exclusion.

Also, when dealing with third-party library routines, it may not be clear a

priori whether certain actions fail if accessed concurrently. When faced with

unexplained, incorrect behaviour, one might hypothesize that this is a result

of concurrent accesses to a faulty routine; it could be helpful if a detection

mechanism allowed veri�cation that the routine was, indeed, being accessed

concurrently, before embarking on the potentially lengthy chore of enforcing

mutual exclusion among such calls (Ponamgi, Hseush and Kaiser [31] give an

example of such a scenario).

3. Finding Subroutines In a large process-time diagram, it can often be ex-

tremely di�cult just to locate the relevant section of the display, in order to

perform a more detailed ad hoc examination of some subroutine's behaviour.



CHAPTER 3. EVENT-DETECTION STRATEGIES 30

Thus, it would be helpful if a tool were available to locate calls to a speci�c

\subroutine" within the context of a large event trace.

4. Symmetry in Communication Often, the constraints on inter-process tim-

ing are more complex than simple mutual exclusion. For example, a \pro-

ducer" should not generate items faster than the corresponding consumer can

retrieve and process them (see page 41). This relationship can often be quite

intricate, involving multiple groups of processes, within the limited 
exibility

that the bounded bu�er provides. It appears that the ability to detect the

presence and/or violation of such symmetry could be helpful in the under-

standing and monitoring of distributed applications.

5. Identifying Bottlenecks Ideally, such a tool would also assist in the iden-

ti�cation of performance bottlenecks. For example, one might wish to locate

positions during an event trace when more than n processes from some set S

were simultaneously blocked.

3.2 Previous Work on Event Recognition

This section reviews the history of work related to event recognition, with particular

emphasis on the syntactic strengths and weaknesses of the various approaches,

and on their resulting expressivity. In the interest of greater clarity, notational

substitution has been employed throughout this section; e.g., where various authors

have used Lamport's happens-before relation, this is rendered here by the symbol

!, while the papers in question render it variously as !, <, and �.



CHAPTER 3. EVENT-DETECTION STRATEGIES 31

3.2.1 Bates-Wileden Event-De�nition Language (EDL)

Bates and Wileden [6] made an early attempt to provide a mechanism for the

de�nition of event predicates. They presented a language including the following

operators:

� catenation ('): (a ' b) , (b occurs after a)

� alternation (_)

� shu�e (^): (a ^ b), (a ' b _ b ' a)

� named subblocks: names can be assigned to event de�nitions and these

names can, in turn, be used to build further de�nitions, producing a hierarchy

of abstractions

� binding: Multiple matches of an event de�nition can be distinguished from

one another by the use of indices which are bound to each instance. For

example, the predicate

node failed[1] ^ node failed[2]

could be used to detect a situation where two (arbitrary, but distinct) nodes

within a multi-node system have failed.

Their approach includes a preprocessor-like �lter which removes irrelevant event

information, and only passes events that could possibly form a part of a match on

to the predicate recognizer; this is a useful performance enhancement.

The Bates-Wileden scheme is fundamentally 
awed because it relies upon the

availability of an accurate, global time of occurrence for each event. As Chapter 2



CHAPTER 3. EVENT-DETECTION STRATEGIES 32

mentions, a global clock with the requisite accuracy cannot be made available in

an arbitrary distributed system. Also, the use of real-time information instead of

causality relationships signi�cantly restricts the expressivity of EDL; e.g., the shu�e

operator cannot detect true concurrency (i.e., causal independence). Real-time

information can only convey the relative order of events on a particular execution,

whereas causality relationships accurately re
ect all possible execution orderings.

Nonetheless, �ltering, named subblocks and instance binding are useful concepts

which have often been overlooked in subsequent work.

3.2.2 Chandy-Lamport Distributed Snapshots

Chandy and Lamport [8] presented another early attempt at event detection. They

de�ned a stable predicate to be one which, once it becomes true, remains true

for the remainder of the computation, i.e., a phase transition as described in Sec-

tion 3.1.2.

The authors presented an elegant, if somewhat abstract, algorithm to record a

snapshot of the global system state. (Essentially, processes cooperate to ensure a

consistent representation of the global state by passing \marker" tokens from one

to the next.) This algorithm provides the following guarantee: if S� is the initial

state of a system, S� is the current state of the system, Sc is a current snapshot,

and y(S) is a stable predicate, then

� y(Sc)) y(S�), and

� :y(Sc)) :y(S�)

This allows a process testing for the predicate y(S) to conclude that the stable state

has been reached once y(Sc) is true.



CHAPTER 3. EVENT-DETECTION STRATEGIES 33

While interesting, this approach is of limited use in a debugging context; a

human operator can discern the presence of a stable predicate from trace output

with relative ease, and the authors do not address the detection of non-stable

predicates.

3.2.3 Miller-Choi Predicates

Recognizing the importance of a Lamport-like causality relationship, Miller and

Choi [29] proposed the following predicate de�nition for use in specifying distributed

breakpoints:

� Simple Predicates (SP): these are single, primitive events.

� Disjunctive Predicates (DP): a disjunctive predicate is composed of one

or more SPs combined by the logical disjunction operator:

DP := SP [_ SP]�

That is, a DP is satis�ed i� one or more of its constituent SPs is satis�ed.

� Linked Predicates (LP): a linked predicate consists of one or more DPs

which must occur in the order speci�ed.

LP := DP [! DP]�

� \Conjunctive" Predicates (CP): These would more accurately be labeled

\concurrent" predicates, since the operator upon which they are based is con-

current composition (k, de�ned in an unusual fashion because of the absence

of vector clocks):



CHAPTER 3. EVENT-DETECTION STRATEGIES 34

CP := SP [k SP]�

Since this paper appeared prior to the widespread publication of the Fidge /

Mattern vector-timestamp breakthrough, it is perhaps unsurprising that the au-

thors do not employ vector timestamps. Most likely because of the lack of this

foundation, they restrict their linked predicates to disjunctions of primitive events,

and o�er a detection algorithm only for linked predicates and not for conjunctive

predicates. Thus, the expressive power of their system is rather limited.

By imposing these restrictions, however, their distributed algorithm is able to

detect the occurrence of predicates in real time, with a small computation and

communication overhead.

3.2.4 Haban-Weigel Predicates

At roughly the same time, Haban and Weigel [20] also proposed a predicate-

speci�cation language; following Mattern's suggestion, they incorporated vector

timestamps into their proposal. In fact, their speci�cation language is quite pow-

erful, and a model which this author has decided to follow closely.

They de�ne a global predicate to consist of single (primitive) events, combined

with the following operators:

� sequential (!) and concurrent (k) composition

� conjunction (^) and disjunction (_)

� `negation' (@):2 a @ b is satis�ed i� 9a; b : a is satis�ed and b has not (yet)

become satis�ed

2This should not be confused with the Hseush-Kaiser closure operators, nor with the repetition

operators introduced in Section 3.3.3.



CHAPTER 3. EVENT-DETECTION STRATEGIES 35

P

Q

R

b

c

a

a b

c

Figure 3.1: Example Haban-Weigel predicate

� between (@): @b(a, c) is satis�ed i� 9a; c : a! c is satis�ed, and 6 9 b such

that a! b! c

The between operator is an interesting innovation. It allows the speci�cation of

predicates to detect communication-synchronization problems, a goal which most

predicate-de�nition languages are unable to meet. Nevertheless, the Haban-Weigel

syntax lacks a key feature: it should be possible to employ wildcards in the spec-

i�cation of primitive events, because predicates to detect certain situations will

otherwise balloon into an unwieldy disjunction of combinatorial possibilities.

In an e�ort to distribute the load of the detection algorithm throughout the

system, the authors maintain a local debugger (di, i = 1 : : : n, where n is the

number of nodes in the system) on each node, and a coordinating central test

station (CTS). The latter builds a parse tree for the predicate and distributes a

copy of it to each of the former.

Example 4

Consider Figure 3.1. To detect the tri-event predicate depicted in the process-

time diagram on the left, Haban and Weigel would use the predicate (a !

b) k c, which yields the parse tree depicted on the right.



CHAPTER 3. EVENT-DETECTION STRATEGIES 36

Whenever an event ei occurs on a node i, the di applies it to the parse tree by

attaching its timestamp Tei to all leaf nodes, and then tests the tree to determine

whether the predicate is satis�ed. So that each local debugger can maintain an

overview of the entire execution, the debugger di noti�es each dj, j 6= i, of the

occurrence of every event ei and its corresponding timestamp. Since no attempt is

made to queue arriving events and to enforce a consistent state, non-uniform delays

in inter-node communication could cause the parse tree to re
ect a state which is

inconsistent with the program's execution, thus leading to the detection of spurious

predicates and/or the failure to detect actual occurrences. It is also interesting

to note that every local debugger does as much predicate-testing computation as

would be required of a central debugger, and that the debugging system's total

communication overhead is n times greater than that which would be required if a

single, central debugger were used. The moral is clear: while a means of distributing

the task of event-detection may be desirable, a poor distributed algorithm can

perform signi�cantly worse than a simple, centralized algorithm, and the prospect

of designing an e�ective distributed algorithm is a daunting one.

There is, however, a more fundamental 
aw in the Haban-Weigel approach.

They use a single vector timestamp, equivalent to the back timestamp from De�-

nition 8, to describe the time at which a compound event has occurred; as Schwarz

and Mattern [32] point out, no single timestamp can accurately convey precedence

information for a non-atomic event. In order to achieve a well-de�ned, sensible

precedence relation over anything other than primitive events, a compound-event

timestamp scheme like those discussed in Chapter 2 must be employed.



CHAPTER 3. EVENT-DETECTION STRATEGIES 37

3.2.5 Hseush-Kaiser Data-Path Expressions

Hseush and Kaiser [21, 31] avoided the problem of extending vector time to com-

pound events by doing completely without vector clocks. Their data-path ex-

pressions (DPEs), based on primitive events, are built up recursively using the

following operators:

� sequencing (;): a; b i� a is the immediate causal predecessor of b (not equiv-

alent to !)

� concurrency (k)

� exclusive `or' (�)

� sequential closure (�):3 a� := "� a� (a; a)� (a; a; a)� � � �

� concurrent closure (@): a@ := "� a� (a k a)� (a k a k a)� � � �

For event recognition, their approach employs a central \stabilizer" which re-

ceives event-trace information from the various debuggees, �lters out those events

which are obviously irrelevant to the predicate under consideration, linearizes the

remainder in a manner consistent with the causal partial-order, and then feeds the

resulting stream of events to a predecessor automaton (PA) (see Figure 3.2).

Predecessor automata resemble �nite-state automata, but each transition is labeled

with a vector. The �rst element of this vector is the event which must be encoun-

tered to trigger the transition, and the remaining elements form the immediate

causal predecessors which the event must have in order for the transition to take

place.

3The reader should take care not to confuse these closure operators with the repetition oper-

ators introduced in Section 3.3.3, nor with Haban-Weigel's @.



CHAPTER 3. EVENT-DETECTION STRATEGIES 38

PA

Debuggee

Debuggee raw events

raw events

Stabilizer

filtered,
linearized
events

Figure 3.2: Hseush-Kaiser event recognizer

PAs have problems with ambiguities [4, 32], but the greatest drawback to the

Hseush-Kaiser approach is the use of the sequencing operator (;) instead of Lam-

port's happens-before concept (!). To render a ! b ! c in a DPE requires the

syntax

a; (a� c�X)�; b; (a� b�X)�; c

where X denotes the exclusive selection of all other primitive events which occur

anywhere in the DPE. Automatic generation of DPEs is, of course, possible for the

! relation, but it is not feasible for the Haban-Weigel between operator [32]. Thus,

PAs cannot achieve the level of expressivity required to meet all of the goals set

forth in Section 3.1.2.

3.2.6 Garg-Waldecker Weak Conjunctive Predicates

Garg and Waldecker [17] recognized the importance of the ability to detect unstable

predicates, and further observed that a feasible detection algorithm must make use

of Lamport's happens-before relation. In the interest of simplicity (and, hence,

tractability), they de�ned a limited global predicate as follows:



CHAPTER 3. EVENT-DETECTION STRATEGIES 39

De�nition 14 (WCP)

A weak conjunctive predicate consists of one or more primitive events ei

\conjoined"4 by the concurrent composition operator (k); i.e., a WCP is true

i� all of its primitive events are concurrently true:

WCP := e1 [kei]�

In order to detect the occurrence of WCPs, the authors proposed the following

strategy: all events (and their corresponding timestamps) are sent to a central

\checker" process, which then scans for occurrences of the speci�c primitive events,

and determines whether they are concurrent in the Lamport sense. They provided

an algorithm for this checker, and also demonstrated how the process can be divided

among a hierarchy of checkers.

Like the various Miller-Choi predicates, the expressiveness of WCPs is extremely

limited; they can be used to verify mutual exclusion, but little else. For example,

they do not o�er any provision for sequential relationships (!) within a predicate.

3.2.7 Chiou-Korfhage Event-Normal-Form Predicates

Chiou and Korfhage [10, 11, 12] built on Garg and Waldecker's [17] work, attempt-

ing to expand it and reduce its limitations. They adopted the weak conjunctive

predicate, albeit under the new name concurrent event string (CES), and then

de�ned a sequential event string (SES) to be the sequential composition of one

or more CESs, i.e.,

4Note that, while Garg and Waldecker use the term \conjunctive" and the traditional symbol

for logical conjunction (^) in their WCPs, they assign to it the meaning of concurrent composition;

this is but one of many examples of the current confusion over terminology in the �eld.



CHAPTER 3. EVENT-DETECTION STRATEGIES 40

CESM

CESM CESM

Master

CES CES

Figure 3.3: Chiou and Korfhage's distributed ENF-predicate recognizer

SES := CES [! CES]�

Finally, their approach allows the combination of sequential event strings with the

disjunction operator.

De�nition 15 (ENF)

An event-normal-form predicate consists of one or more SESs combined with

logical disjunction operators:

ENF := SES [_ SES]�

As with Garg and Waldecker's WCPs, the detection of concurrent event strings

can be distributed throughout the system with a hierarchical structure of \checker"

processes, or, as Chiou and Korfhage term them, concurrent event string mon-

itors (CESMs). Each instance of a CES is eventually detected and passed to a

central master process, which checks for the occurrence of SESs and, eventually,

ENF predicates (Figure 3.3).

While event-normal-form predicates o�er a greater degree of expressiveness than

WCPs (in addition to detecting violations of mutual exclusion, they can also locate



CHAPTER 3. EVENT-DETECTION STRATEGIES 41

write

P

B

C

request request requestdata data data

write write write

Figure 3.4: Producer-consumer race problem

occurrences of some subroutine calls), their sequential-composition operator (!)

still provides only a limited amount of control and, in particular, cannot verify

communication symmetry. Consider the following problem:

Example 5

Consider the situation depicted in Figure 3.4. A producer P and a consumer

C are writing to and reading from, respectively, a bounded bu�er B of size

one. Some form of control logic (its details are unimportant, and are not

discussed here) is in place to regulate the reads and writes in order to prevent

the bu�er from over
owing. There is an error in this control logic, and, at one

point (inside the dashed-line box), the producer goes too fast, thus over
owing

the bu�er.

What is needed in order to detect this error condition is a method, such as Haban

and Weigel's between operator, through which one may ascertain how \closely"

two sequential events (a; b) are related (including, in particular, what intermediate

events ei may lie in-between, such that a! ei ! b). Because ENF predicates lack

such a facility, they are inherently unable to detect an error condition like that in

Example 5.



CHAPTER 3. EVENT-DETECTION STRATEGIES 42

3.2.8 Basten's PLR Parsing

Basten [3, 4] recognized that, since Lamport's happens-before relation (!) yields

a partial order, an event trace from a distributed execution may be viewed as a

partially ordered multiset (\pomset").

Conventional LR parsing, practised, e.g., in modern compilers, deals with to-

tally ordered multisets (\tomsets"). (Aho et al. [1, Section 4.7] is the de�nitive

introduction to this area.) Basten extended this mechanism to pomsets, and pro-

vided an algorithm to generate tables for, and parse, PLR grammars. His algorithm

relies on �rst producing a linearization of the pomset (i.e., an arbitrary total order-

ing which is compatible with the partial ordering); the events are then fed to the

parser in this (arti�cial) sequence, and the parser attempts to a�ord each event a

position within the structure de�ned by the PLR grammar. Unfortunately, Bas-

ten's algorithm deals only with the recognition of entire pomsets, and ignores the

problem of detecting subpomsets within the event-trace input.

Cormack [13] provided an extension to the LR parsing of tomsets which allows

it to recognize substrings within a larger input context. His algorithm augments

the traditional closure operator to include arbitrary pre�x information, so that

the resulting parse-action tables cause a substring y to be recognized within the

context vy, for any possible pre�x v. Cormack's goal was to provide graceful error-

recovery during program compilation, and his approach is quite successful in this

regard. However, his parser must reset itself whenever it encounters a token that

does not �t into the grammar; this strategy does not work with PLR parsing, since

a linearization may leave multiple extraneous events within a valid instance of a

subpomset.

While an e�cient subpomset PLR parsing algorithm may be possible, its form



CHAPTER 3. EVENT-DETECTION STRATEGIES 43

is far from obvious. On a more subjective note, context-free parallel grammars

(\CFPGs") provide a method of predicate speci�cation which, while powerful, is

complex and di�cult to grasp. Drawing an analogy with the totally ordered input

of modern compilers, one can observe that formal grammars are the overwhelming

tool of choice among compiler writers, who require a detailed understanding of the

entire input; in general, however, programmers employ much simpler pattern spec-

i�cations, such as regular expressions, when searching through source code during

the construction and debugging phases. What is needed seems to be a practical

compromise between the time required to construct a query and the precision of

the result.

3.2.9 Seuren Communication Patterns

Seuren [34] sought to provide an automated mechanism to abstract away \units of

work" within an execution trace. With this goal in mind, he restricted his objective

to deal only with sets of events that form a totally connected subgraph, which he

termed communication patterns. In this context, he presented an e�cient search

algorithm based on the Boyer-Moore substring-matching approach.

Example 6

What does|and does not|qualify as a communication pattern: Seuren's

patterns must be totally connected, and may not have any non-member events

participating in the connections. Thus, in the event trace of Figure 3.5,

fa; b; d; eg can constitute a pattern, but fa; b; d; fg and fa; ig cannot.

While Seuren's restrictions on the composition of patterns are reasonable in

the context of automated event abstraction, they limit the expressiveness of the

resulting speci�cation mechanism to an extent that severely hampers its ability to



CHAPTER 3. EVENT-DETECTION STRATEGIES 44

l

f

j

e

b

k

i

d

a

g

c

h

Figure 3.5: Sample communication patterns

constitute a reasonable predicate-speci�cation system in a debugging or monitoring

context. Regrettably, Seuren's algorithm is intrinsically linked to this restriction,

and is not applicable in a monitoring or trace-searching setting.

3.3 Proposed Predicate-Speci�cationMechanism

The most common stumbling block among previous attempts at event recognition

is the lack of a solid de�nition for compound precedence; of the above algorithms,

only Basten's (theoretical) PLR parsing, and Seuren's (for this application, overly

limited) communication patterns allow predicates to be constructed as a hierarchy

of successive abstractions while correctly preserving a causality relationship.

Starting with the rich Haban-Weigel syntax, this thesis adds a few re�nements

to create a new, more expressive predicate-de�nition language built on the carefully-

de�ned compound-precedence relationships described in Chapter 2.



CHAPTER 3. EVENT-DETECTION STRATEGIES 45

3.3.1 Syntax

The basic component of a predicate is a 3-tuple describing a single primitive event:

the textual name of the process in which the event occurs, the type (e.g., process

start, asynchronous send) of the event, and an additional textual comment which

may have been included either automatically (e.g., in the case of a remote procedure

call, the name of the procedure being invoked) or manually (e.g., a programmer-

de�ned call in the source code could generate an event indicating that a certain

checkpoint had been reached in the code's execution). Each of these individual

entries can, at the user's option, be left blank (in which case it is treated as a

\match-anything" wildcard) or �lled with a regular expression. If an entry matches

more than one process, type or textual comment, then all matches are considered

in the course of a backtracking search for occurrences of the overall predicate.

A communication \event" can be identi�ed by joining two components, repre-

senting the send and the receive, with a period (i.e., send.receive).

These events can be composed by using the standard boolean operators (^, _),

parentheses, and the precedence relationships discussed in Chapter 2. To provide

a greater degree of expressiveness, limited versions of the happens-before relation-

ships (similar to the Haban-Weigel between operator) are introduced.

De�nition 16 (Limited !)

A
B
! C is satis�ed i� 9A;C : (A! C) ^ (6 9B : A! B ! C)

De�nition 17 (Limited ;)

A
B
; C is satis�ed i� 9A;C : (A; C) ^ (6 9B : A; B ; C).

The grammatical structure of this speci�cation language is summarized in Fig-

ure 3.6.



CHAPTER 3. EVENT-DETECTION STRATEGIES 46

predicate ::= term

term ::= term ! term

j term k term

j term ; term

j term oo term

j term
term

! term

j term
term

; term

j term ^ term

j term _ term

j ( term )

j event

event ::= component . component

j component

component ::= [ process , type , text ]

Figure 3.6: A generating grammar for the proposed predicate language



CHAPTER 3. EVENT-DETECTION STRATEGIES 47

3.3.2 Expressivity

To assess the degree of expressive control which is o�ered by this proposed language,

consider the problem classes enumerated in Section 3.1.2, all of which an ideal

predicate-speci�cation system should be able to detect.

3.3.2.1 Phase Transitions

Certain types of transitions can be detected quite easily using this system. For

example, if a predicate conjunctively speci�es a thread-terminate message for each

individual thread, then it is satis�ed i� the entire distributed computation has ter-

minated. Other transitions, e.g., deadlock detection, remain a daunting task; an

astute user could, however, use this mechanism to specify a predicate to indicate

when deadlock may be present, and then de�ne a more in-depth (and, presum-

ably, more costly) analysis using another tool, to be invoked whenever the initial

predicate was satis�ed.5

Example 7 (Termination Detection)

Consider the execution in Figure 3.7. The text beside each event indicates its

event type. The predicate

[ A , thread end , ] ^ [ B , thread end , ] ^ [ C , thread end , ]

is satis�ed i� the computation has terminated.

5Alternatively, the user could de�ne a non-exhaustive set of assertions whose failure (i.e.,

detection) would indicate the presence of a deadlock.



CHAPTER 3. EVENT-DETECTION STRATEGIES 48

B
send

recv

recvrecv

send

thread_start

thread_start

send

thread_end

thread_end

thread_endthread_start

C

A

Figure 3.7: Output trace discussed in Example 7

3.3.2.2 Mutual-Exclusion Violations

These are trivially speci�able through the use of the concurrent-composition oper-

ator.

Example 8

Let A and B specify two events which must not be allowed to occur concur-

rently. Then the predicate A k B is satis�ed i� the exclusion is violated.

3.3.2.3 Finding Subroutines

Most event-collection systems include enough information in the trace data that the

users are able to specify predicates that locate calls into, and returns from, remote

subroutines. If the existing trace data are not speci�c enough for this purpose, users

can always augment the available information by hand-coding instrumentation at

the entry to and exit from the relevant procedures.

Example 9

Consider a program written in the �C++ language [7], and then traced with

the default POET instrumentation. A request to lock a semaphore produces



CHAPTER 3. EVENT-DETECTION STRATEGIES 49

thread continue
MyTask

uSemaphore

thread enter "uP"

thread received thread leave "uP"

Figure 3.8: �C++ trace fragment referred to in Example 9

the event-trace fragment shown in Figure 3.8. (The task MyTask makes a

routine call to lock the semaphore. The comment beside each event is the

event type; textual \decorations" are appended in quotation marks, where

appropriate.) The predicate

A := [ MyTask , thread enter , uP ] . [ uSemaphore , thread received , ]

matches all calls from MyTask to lock the semaphore,

B := [ uSemaphore , thread leave , uP ] . [ MyTask , thread continue , ]

matches all returns from the above call, and

A
A
! B

matches each entire call-and-return sequence.

3.3.2.4 Symmetry in Communication

The limited ! and ; operators provide a degree of control that enables the user

to detect the presence of simple communication-symmetry problems quite easily.

Nonetheless, the de�nition of predicates to check complex symmetry patterns

can be quite tedious and confusing; some of the extensions sketched in Section 3.3.3

might help to alleviate this problem.



CHAPTER 3. EVENT-DETECTION STRATEGIES 50

sw
P

B

C

sw

rw
rr sd

sr rd

sw

rw

sw

sdrr
rw

sr rd

sd

rdsr

rr
rw

Figure 3.9: Producer-consumer race revisited

Example 10 (Producer-consumer race revisited)

Recall the situation mentioned in Example 5: a producer and a consumer are

communicating via a bounded bu�er of size one. Examining Figure 3.9, notice

that the send and receive portions of each message are separately designated:

sw = send write, rw = receive write, sr = send request, rr = receive request,

sd = send data, and rd = receive data. As in the earlier �gure, a dashed line

surrounds the extraneous write which indicates a synchronization problem

and causes the bu�er to over
ow. Using this notation, the predicate

[B; rw; ]
[B;sd;]
! [B; rw; ]

detects the bu�er-over
ow problem depicted in the �gure.

3.3.2.5 Identifying Bottlenecks

As is clear from the bounded-bu�er example, this class of problem is actually a slight

variation on the previous one. Perhaps unsurprisingly, the proposed system has the


exibility and degree of control required to detect simple bottlenecks. Moderately

large-scale situations, however, require an extension to the syntax; this is dealt with

in Section 3.3.3.



CHAPTER 3. EVENT-DETECTION STRATEGIES 51

Example 11

Once again, consider a simple semaphore, used to lock access to a particular

feature which can only be accessed by one thread of control at a time. As

has been demonstrated in Example 9, the �C++ language and POET instru-

mentation translate a request by a process, say Fred, to lock the semaphore

into the communication pair

[ Fred , thread enter , uP ] . [ uSemaphore , thread received , ]

and the corresponding lock-achieved message into the pair

[ uSemaphore , thread leave , uP ] . [ Fred , thread continue , ]

Likewise, the request-release / release-achieved messages would be

[ Fred , thread enter , uV ] . [ uSemaphore , thread received , ]

and

[ uSemaphore , thread leave , uV ] . [ Fred , thread continue , ]

Now, consider the situation where a second process, say Jane, also requests a

lock on the same semaphore while Fred has it locked. Then the (conceptual)

thread of control blocks inside the uSemaphore trace until it becomes possible

to grant Jane the lock; this can be seen in Figure 3.10. (Dashed triangles

indicate the points at which Fred and Jane receive con�rmation that the

semaphore has been locked (r) or unlocked (�).) To detect all situations

where a process is waiting for a semaphore to become available, it is su�cient

to specify the single-event predicate

A := [ uSemaphore , thread block , ]



CHAPTER 3. EVENT-DETECTION STRATEGIES 52

"uP"
Fred

Jane

uSemaphore
"uP"

thread leave

"uP"
thread enter

thread leave thread leave
"uV" "uP"

thread block thread ready

thread enter
"uV"

thread enter

Figure 3.10: A thread blocks while waiting to acquire a lock

For notational convenience, de�ne the predicate

B := [ uSemaphore , thread ready , ]

Then the predicate

A
B
! A

(two consecutive blocks with no intervening ready) can be used to detect the

more complex situation where two or more processes are blocked simultane-

ously.

This approach does not, however, extend to the detection of situations when

three or more processes are simultaneously blocked. The predicate

A
B
! A

B
! A

might be expected to achieve this e�ect. Consider, however, the situation

in Figure 3.11: tasks are blocked (dashed circles) four times, and unblocked

(dashed square) once; at the end of the diagram, tasks 1, 4, and 3 are simul-

taneously blocked, but the above-mentioned predicate is not satis�ed. What

is needed is a predicate with a functionality equivalent to the following:



C
H
A
P
T
E
R
3
.
E
V
E
N
T
-D
E
T
E
C
T
IO
N
S
T
R
A
T
E
G
IE
S

53

uSemaphore

thread enter
"uP"

Task1

Task2

Task3

Task4

"uP"
thread leave

"uP"
thread enter

thread block
(Task2)

thread enter
"uP"

thread block
(Task3)

thread enter
"uV"

thread leave
"uV"

thread ready
(Task2)

"uP"
thread leave

thread enter
"uP"

thread block
(Task4)

thread enter
"uP"

(Task1)
thread block

F
ig
u
re

3.
11
:
T
h
re
e
th
re
ad
s
ar
e
si
m
u
lt
an
eo
u
sl
y
b
lo
ck
ed



CHAPTER 3. EVENT-DETECTION STRATEGIES 54

C := A _ B;

(A
C
! A

C
! A)

W
(A

C
! A

C
! B

C
! A

C
! A)

W
(A

C
! A

C
! B

C
! A

C
! B

C
! A

C
! A)

W
� � �

In other words, some partial-order versions of the regular-expression repetition

(�) operator are needed. This point is addressed in Section 3.3.3.

3.3.3 Possible Extensions

Thus, the syntax proposed above is su�cient to meet the �rst four goals set forth

in Section 3.1.2, and to partially ful�ll the �fth. Nevertheless, the previous work

discussed above suggests some further extensions whose addition to the predicate-

de�nition language could prove to be pro�table.

Repetition Operators

The elusive �fth goal can be met in a more satisfactory manner if the syntax is

extended to allow arbitrary repetitions of compound events, joined by ! and ;

operators.

De�nition 18 (Repetition Operator)

A �B is satis�ed i� B
W
(A! B)

W
(A! A! B)

W
� � �

De�nition 19 (Alternative Repetition)

A@B is satis�ed i� B
W
(A; B)

W
(A; A; B)

W
� � �



CHAPTER 3. EVENT-DETECTION STRATEGIES 55

De�nition 20 (Limited �)

A
B
� C is satis�ed i� C

W
(A

B
! C)

W
(A

B
! A

B
! C)

W
� � �

De�nition 21 (Limited @)

A
B

@ C is satis�ed i� C
W
(A

B
; C)

W
(A

B
; A

B
; C)

W
� � �

Example 12

Recall the predicate, sketched in Example 11, to identify the eventuality

that three or more processes are simultaneously blocked waiting for a spe-

ci�c semaphore.

(A
C
! A

C
! A)

W
(A

C
! A

C
! B

C
! A

C
! A)

W
(A

C
! A

C
! B

C
! A

C
! B

C
! A

C
! A)

W
� � �

This can be re-written as

A
C
! A

C
! (B

C
! A)

C
� A

Similarly, the following predicate could be used to detect whether four or

more processes are ever simultaneously blocked:

A
C
! A

C
! (B

C
! A)

C
� A

C
! ([B

C
! A] _ [B

C
! (B

C
! A)

C
� A])

C
� A

\Not Yet" Operator

Although wildcards combined with the limited! and; operators almost subsume

its functionality, there are still some situations wherein Haban and Weigel's simple

negation operator can be useful.



CHAPTER 3. EVENT-DETECTION STRATEGIES 56

consumer
receive end

endsend sendstart

start

send

receive

send_quit

rec_quitreceive

producer

Figure 3.12: Producer-consumer shutdown

Example 13

Consider the situation depicted in Figure 3.12. A producer sends a succes-

sion of data items to a consumer ; when the producer is �nished, it sends a

quit message to the consumer, and both processes terminate. The consumer

should not terminate before the producer has sent the quit message; this error

condition could be detected using a \not yet" operator ( !̀).

[ consumer , end , ] !̀[ producer , send quit , ]

Named Subblocks

As has informally been used in some of the examples above, the ability to assign

names to building blocks within a predicate can simplify the process of de�ning

certain predicates.

Example 14

The predicate

[ semaphore , block , ]
[semaphore;ready;]

�! [ semaphore , block , ]
[semaphore;ready;]

�! [ semaphore , block , ]

could be re-written as



CHAPTER 3. EVENT-DETECTION STRATEGIES 57

A := [ semaphore, block , ] ;

B := [ semaphore, ready , ] ;

A
B
! A

B
! A

Binding

The ability to bind speci�c instances of matches to sub-patterns with instance

numbers or variables would allow the speci�cation of predicates that can otherwise

only be described in a roundabout manner, if at all.

Example 15

Consider the search for a child process whose �rst action, immediately follow-

ing startup, is to spawn another child (see Figure 3.13). This sequence can

be speci�ed using wildcards with the limited ! relation

[ , spawn , ] . [ child.� , start , ]
[child:�;;]
�! [ child.� , spawn , ]

or, equivalently, by binding instances

f1g := \child.�" ;

[ , spawn , ] . [ f1g , start , ]
[f1g;;]
�! [ f1g , spawn , ]

If, however, the search is for a child that spawns another child after an inde-

terminate number of intervening events, then this capability is indispensable.

The predicate

f1g := \child.�" ;

[ , spawn , ] . [ f1g , start , ] ! [ f1g , spawn , ]

cannot be speci�ed without the ability to bind instances.



CHAPTER 3. EVENT-DETECTION STRATEGIES 58

start
root

child1

child2

start

spawn

spawn

start

Figure 3.13: A child (immediately) spawns another child

Real-Time Information

The ability to add real-time restrictions to predicates would be particularly helpful

for performance analyses. For example, the situation wherein a user is blocked,

waiting for a lock, for more than 5 seconds, might be speci�ed as follows:

f1g := \user.�" ;

[ f1g , block , ]
>5sec:
�! [ f1g , unblock ]



Chapter 4

Implementation

4.1 POET

4.1.1 Motivation

The Partial-Order Event Tracer (POET) is an event-visualization tool developed

by the Shoshin research group at the University of Waterloo [38, 40]. There are

several reasons why POET provides a good base for event-detection investigations:

� Solid (tested) foundation. The POET system has been in use for four

years, and the algorithms to timestamp events and display process-time dia-

grams are reasonably fast and largely bug-free.

� Target-independent and abstraction-capable. POET is capable of deal-

ing with a number of di�erent target (debuggee) operating environments, and

can apply several abstractions to its process-time diagrams. The presence of

these features in POET allows (or, perhaps, encourages) the development

59



CHAPTER 4. IMPLEMENTATION 60

of an event-detection / monitoring mechanism that can cope with such an

environment.

� Appreciable user base. Since distributed-system programming is still in

its infancy, no distributed debugging tool is in widespread use. Nonetheless,

POET is the focus of an active research e�ort at the University of Waterloo,

where it is also employed by undergraduates in the introductory concurrent-

programming course; as well, its development has been, and continues to

be, actively supported by IBM. The objective of this thesis is to provide a

prototypical implementation of an event-detection mechanism so that prac-

tical experience with it can shed further light on the ideal form for such a

tool; POET seems to have the user base that is a prerequisite for such an

iterative-re�nement process.

4.1.2 Architecture

POET is target-system independent [41], and has been adapted for use with Hermes

[38], OSF DCE [43], PVM [25], ABC++ [33], �C++ and, naturally, to debug itself.

Various custom parameters for each of these environments are stored in target-

description �les; the relevant environment is identi�ed when the �rst debuggee

starts, and the event tracer then con�gures itself accordingly.

Instrumentation is achieved in several di�erent ways, depending on the tar-

get environment; these include modi�cations to code-generators, run-time libraries,

the system interpreter, and/or the use of system-speci�c status information. While

the exact information collected varies from one target-environment to the next,

attempts are generally made to trace inter-process communication and other sig-

ni�cant intra-process events, e.g., process creation, termination, blocking and un-



CHAPTER 4. IMPLEMENTATION 61

blocking. Support is also provided for the client programmer to hand-instrument

sections of the source code being examined through the inclusion of calls into the

event-collection mechanism. The POET system generates modi�ed Fidge time-

stamps (extended for synchronous communication as described in Section 2.4.1,

with the additional change that each clock is intialized to the zero vector) for the

event-trace data, and can use this information to construct a scrollable process-time

diagram.

The POET system is, itself, composed of a number of processes. The event

server receives event data from the target-speci�c collection mechanism, and stores

this in an event-data �le. The debug-session process manages an interactive graph-

ical interface which includes a scrollable process-time diagram. Finally, the check-

point process produces checkpoints of timestamp information at regular intervals

throughout the event-data �le; this performance enhancement allows the debug

session to quickly scroll to another location and redraw the diagram, computing

the relevant timestamps starting at a checkpoint instead of at the beginning of

the �le. Figure 4.1 outlines the communication relationships between these various

components.1

4.1.3 Display

Di�erent symbols (circles and squares, solid and un�lled) are used to display various

classes of event types; this helps to maximize the amount of information provided

by the limited available screen real-estate. As well, the process-lines are drawn

in di�erent styles (solid, dashed, or empty) depending on the current state of the

process (e.g., executing, blocked, and non-existent). The exact meanings ascribed

1This �gure is adapted from [38].



CHAPTER 4. IMPLEMENTATION 62

Debuggee

Records

point

Check-

Process

Checkpoint

Session

Debug

File

event

Raw-

File

Descr.

Target-

Server

Event

Debuggee

Figure 4.1: The POET architecture



CHAPTER 4. IMPLEMENTATION 63

to each symbol and line-style are target-speci�c. For each individual event, the user

can pop up an information box which includes the event's type and any descriptive

text.

To assist in the understanding of large event traces, processes can be clustered

together (thus hiding events internal to the cluster) [39], and primitive events can be

grouped together into abstract events, either manually or through the application

of automatic pattern-detection mechanisms [24, 34]. Cluster traces are drawn on

a shaded background. Abstract events are denoted by a rectangular box, which

contains a �lled square where it crosses each trace from which a member of the

abstraction is drawn.

Example 16

Figure 4.2 presents a sample event-trace display. The trace output depicts the

behaviour of a sample �C++ AlarmClock program. Here, the Clock process

periodically calls into the Alarm to indicate that another tick has occurred.

Each SampleUser process, on startup, makes a request to the Alarm process

to let it sleep for some random number of seconds, at which point the Alarm

process unblocks the SampleUser, which then requests to sleep for a further

random interval. After its second awakening, the SampleUser process termi-

nates itself. To decrease the amount of information in the display, several

SampleUser processes are clustered together into the Other Users trace; no-

tice that the intra-cluster events (in this case, the various events upon thread

startup) are not displayed. Also, the sleep for calls for several SampleUser

processes inside the the Other Users cluster, and some of the communication

between the Clock and Alarm have been grouped into two abstract events.



CHAPTER 4. IMPLEMENTATION 64

Figure 4.2: POET display with clustering and event abstraction

4.2 Implementation Notes

I have implemented an event-predicate-detection feature as an extension to the

debug-session process of the POET system. This section provides an overview of

the implementation, including some of the algorithms and the theory behind them.

4.2.1 ASCII Representation

Some of the notation2 introduced in Section 3.3.1 does not have an obvious plain-

text encoding. To avoid the need for a separate, graphical, predicate-editing tool,

the meaning-equivalent representations described in Table 4.1 are introduced.

4.2.2 Parsing

An LR(1) parser, based on the grammar described in Section 3.3.1, is implemented

with the lex / yacc parser-generation tools [22]. As the predicate is parsed, a

standard-style expression parse tree is built. Most relational operators allowed by

the grammar are binary (A ! B, A k B, A; B, A ooB, a:b , A ^ B, A _ B) and

2A comprehensive list of the notation adopted in this thesis is given on page 118.



CHAPTER 4. IMPLEMENTATION 65

Formal ASCII Meaning

! --> sequential composition

k || concurrent composition

; ~~> alternative !

oo fg alternative k

A
B
! C A-(B)->C limited !

A
B
; C A~(B)~>C limited ;

^ AND conjunction

_ OR disjunction

Table 4.1: ASCII equivalences for predicate notation

use the obvious binary-tree representation; an example is presented in Figure 4.3.

The ternary operators (A
B
! C, A

B
; C) are also stored in a binary representation;

see Figure 4.4 for an example.

A B

C

||

Figure 4.3: A simple parse tree, representing the expression (A! B) k C



CHAPTER 4. IMPLEMENTATION 66

pair

limited

pair

d e

b ca

Figure 4.4: Parse tree for the expression a
b:c
�! d:e

4.2.3 Searching

A depth-�rst search is employed, with extensions for backtracking to locate all

possible predicate matches. The search procedure, SeekNextMatch(), operates

recursively, starting at the root of the parse tree. Because backtracking is em-

ployed, each node may be visited multiple times in the course of the search. The

usual stack-based local-variable scheme would fail to preserve search information on

subsequent visits to the same node; thus, each node's local search-progress informa-

tion is stored in designated �elds within the parse-tree's node structure. Naturally,

the algorithm's speci�c behaviour on each node depends upon its type.

Merging Timestamps

Before SeekNextMatch returns a match for a non-leaf node, it generates front

and metron timestamps for the node, based on the front and metron timestamps of

its children. The algorithm used is a direct application of the following theorem:3

3The actual implementation does not maintain back timestamps, since it is based on the

modi�ed Fidge primitive-event timestamping mechanism; back timestamps are merely mentioned



CHAPTER 4. IMPLEMENTATION 67

Theorem 7 (Merging Timestamps)

Given two compound events B, C, construct a new compound event A :=

(B [ C). Then, 8i 2 f1; : : : ; ng, the timestamps for A can be calculated as

follows:

TA:front[i] := min fTB:front[i]; TC:front[i]g ;

TA:back[i] := max fTB:back[i]; TC:back[i]g ;

TA:metron[i] := max fTB:metron[i]; TC:metron[i]g ;

Proof:

The �rst two calculations follow directly and obviously from the de�nitions

of their respective timestamps. The correctness of the metron calculation

is, however, somewhat less obvious and deserves further consideration. For

each component i, 1 � i � n, of the vector timestamp, one of the following

conditions must be true:

Case 1: TB:metron[i] = TC:metron[i] = �1

) TA:metron[i] := �1 which is correct, since 6 9e 2 A s.t. proc(A) = i.

Case 2: TB:metron[i] = �1 ^ TC:metron 6= �1

) TA:metron[i] := TC:metron which is correct.

Case 3: TB:metron[i] 6= �1 ^ TC:metron = �1

This follows, by symmetry, from case 2.

Case 4: TB:metron[i] 6= �1 ^ TC:metron 6= �1

) TB:metron[i] =
�

max
b2B; pb=i

Tb[i]
�
^ TC:metron[i] =

�
max

c2C; pc=i
Tc[i]

�

here for the sake of completeness.



CHAPTER 4. IMPLEMENTATION 68

) TA:metron[i] :=

 
max

a2(B[C); pa=i
Ta[i]

!

which is the value stipulated by De�nition 11. 2

All leaf nodes must be single (as yet unpaired) primitive events. Recall that a

primitive event is speci�ed by a 3-tuple:

[ process-name descriptor , event type , event text ]

If any position in this speci�cation is left blank, it is treated as a match-anything

wildcard.

Algorithm 2 (Searching for a Single, Primitive Event)

int p ; /* process number */

int e ; /* event number */

for p := 1 to NumProcesses

if ProcessName(p) matches descriptor

for e := FirstRelevant(node) to LastRelevant(node)

if EventType(p, e) matches descriptor

^ EventText(p, e) matches descriptor

return(p, e) ;

return(NoFurtherMatches) ;

Note that, in the interests of e�ciency, an attempt is made to restrict the prim-

itive events under consideration to that range which is relevant within the context

of those match candidates that have already been located, instead of blindly con-

sidering all events on each process as candidates for every leaf node. The discussion

of these relevancy restrictions is deferred until Section 4.2.7.

The process-name descriptor may be plain text (in which case it must match

the ProcessName exactly), or it may be a more complex regular expression.



CHAPTER 4. IMPLEMENTATION 69

Regular-expression parsing and matching operations are implemented using the

regexp routines included with the standard C library.4

4.2.4 Scrolling to a Match

Once a match has been located, it is desirable to scroll the partial-order display

in such a manner that as many of its component primitive events as possible are

simultaneously visible to the user. In cases where the available screen space cannot

accommodate the entire match at once, it is reasonable to display the earlier com-

ponents of the match at the expense of those which happened thereafter. To this

end, the ScrollToMatch algorithm �rst �nds the front of the compound event

to be displayed.

De�nition 22 (Front of a compound event)

The front of a compound event A, front(A), is the set of primitive events

a 2 A such that 6 9b 2 A : b! a.

Example 17

Consider a compound event A which contains all of the primitive events de-

picted in Figure 4.5. The front of that event is fa; dg, i.e., the two events

which are circled in the �gure.

4See the UNIX system manual page for regexp(3), or the include �le regexp.h, for further

details.



CHAPTER 4. IMPLEMENTATION 70

h

d

a

e

b c

f g

i

Figure 4.5: The front of a compound event

Algorithm 3 (Finding the front of a compound event)

/* Initialize the array */ 5

for i := 1 to NumProcesses

�rst [i ] := ? ;

/* Find the �rst event on each trace */

for each a 2 A

�rst [pa] := Earliest( a, �rst [pa] ) ;

/* Throw out extraneous events */

for i := 1 to NumProcesses

for j := 1 to NumProcesses except i

if �rst [j ] ! �rst [i ]

�rst [i ] := ? ;

break ; /* exit inner loop */

/* front = union of all non-? entries in �rst[] */

return(�rst) ;

5Note that ? is used to denote the `unde�ned,' or `nil' value.



CHAPTER 4. IMPLEMENTATION 71

The scroll algorithm is then instructed to place the events in front(A) as close to

the left edge6 of the display as possible. (Synchronous communication lines and/or

event abstractions may force the algorithm to display some of these events slightly

away from the edge, displaced toward the centre of the display).

4.2.5 Colouring a Match

In addition to scrolling the display to render (as much as possible of) the match

visible, it is also desirable to highlight the constituent events in some fashion which

makes their location obvious to the user. This issue is rendered somewhat prob-

lematic by the functionality which has already been incorporated within the POET

display: the event-tagging facility highlights the background behind those events

which it a�ects, and the event decorator7 (when employed) draws circles, squares,

and various arcs thereof, surrounding events. The approach adopted here is to draw

the symbols that form part of the match with their usual shape and background,

but to change the foreground colour.8

6Or, if the display is being built in the vertical mode, wherein time runs from top to bottom,

the top edge is used.

7This optional feature decorates the entry points for similar remote-procedure calls with the

same addition to the event symbol. Depending on the target-environment being used, the dec-

oration to be used may be hard-coded for that speci�c event type, or derived from a heuristic

analysis of the surrounding events.

8The default match colour, \HotPink," is con�gurable through the POET resource �le.



CHAPTER 4. IMPLEMENTATION 72

4.2.6 Process Clustering and Event Abstraction

Recall that process clustering (the combination of event information from several

traces into a single display-trace unit) hides all events on the constituent traces

except for those involving communication with an external trace. If all of the

constituent events forming a match are hidden in this manner, then the match

cannot be displayed without unclustering at least some of the traces; if this is the

case, then the search algorithm assumes that the user is not interested in that

match (because s/he has abstracted away all of the relevant detail) and ignores it,

searching for a subsequent match. If only part of the match is hidden, then the

remainder is displayed in the normal manner.

If one or more components of the match are hidden within an abstract event,

then that abstract event is treated in the same manner as a primitive event by the

scroll-to-match and event-colouring algorithms (the entire event is coloured in the

\match" colour). It is possible for consecutive matches to be hidden within the

same set of abstract events; if that is the case, then only the �rst such match is

displayed, and repeats are rejected in the quest for a subsequent match.9

4.2.7 Relevancy Restrictions

As has been mentioned above (see Section 4.2.3), when searching for a match to

a leaf node (i.e., a primitive-event speci�cation), it is often desirable to limit the

range of event data under consideration.

9It would be a good idea to report the number of rejected (hidden) matches to the user; this

enhancement may be implemented at some point in the future.



CHAPTER 4. IMPLEMENTATION 73

Task2

a cb d e f g

h i j

Task1

Figure 4.6: Relevancy example

Example 18

Consider the process-trace diagram in Figure 4.6, and the predicate

[ Task2 , � , ] k [ Task1 , � , ]

and let event i be of type �. Then, once the search algorithm has identi�ed

event i as a match to the left child of the (k) node, it embarks on a search

for a match to the right child, i.e., an event of type � in task Task1. The

relevant events are fc; d; eg, because no others in Task1 could possibly be

concurrent with the candidate (event i) which has already been identi�ed.

The current system performs relevancy restrictions for those operators that rely

on the recommended precedence relation, i.e., ! (unlimited and limited) and k.

(The existential quanti�er involved in the de�nition of the alternative precedence

relationship, used by; and oo, makes the determination of search-space restrictions

problematic and limits their possible e�ectiveness.) The principles that form the

basis of the search restrictions are listed in Table 4.2; each restriction is helpful in

determining either the �rst relevant event (type `) or the last (a).

The relevancy-restriction feature could be implemented by employing a straight-

forward binary-search algorithm to enforce each of the conditions in Table 4.2.

However, because the POET system uses modi�ed Fidge timestamps, certain opti-

mizations are possible.



CHAPTER 4. IMPLEMENTATION 74

Operator Event Type Restriction Timestamp Comparison

A !B b 2 B ` A ! b TA:metron

act
< Tb

A
C
! B b 2 B ` A ! b TA:metron

act
< Tb

c 2 C ` A ! c TA:metron

act
< Tc

c 2 C a c ! B Tc[pc] < TB:front[pc]

A k B b 2 B ` :(b! A) :(Tb[pb] < TA:front[pb])

b 2 B a :(A! b) :(TA:metron

act
< Tb)

Table 4.2: The basis for relevancy restrictions

Theorem 8

The index of an event a on process pa is equal to (Ta[pa]� 1).

The actual algorithms to locate the �rst and last relevant events are outlined

below. Each BinSearch operation performs a standard binary search on the

current process within the speci�ed range, and last returns the last event on the

speci�ed process.



CHAPTER 4. IMPLEMENTATION 75

Algorithm 4

function FirstRelevant

switch(restriction type)

case !:

if pb 2 active(A)

range := TA:metron[pb] : : : last(pb) ;

else

range := 0 : : : last(pb);

return BinSearch(range for �rst b s.t. TA:metron

act
< Tb) ;

case limited:

/* B was taken care of by the case above, */

/* so I only worry about the limiter, C */

if pc 2 active(A)

range := TA:metron[pc] : : : (TB:front[pc]� 1) ;

else

range := 0 : : : (TB:front[pc]� 1) ;

return BinSearch(range for �rst c s.t. TA:metron

act
< Tc) ;

case k:

return (TA:front[pb]� 1) ;

default:

return 0 ;

end switch



CHAPTER 4. IMPLEMENTATION 76

function LastRelevant(node)

switch(restriction type)

case limited:

return (TB:front[pc]� 1) ;

case k:

if pb 2 active(A)

range := (TA:front[pb]� 1) : : : (TA:metron[pb]) ;

else

range := (TA:front[pb]� 1) : : : last(pb) ;

return BinSearch(range for �rst b s.t. :TA:metron

act
< Tb) ;

default:

return last(pb) ;

end switch



CHAPTER 4. IMPLEMENTATION 77

4.3 A Sample Session

Recall the alarm-clock application discussed in Example 16. This section traces

through the steps required to answer the following question:

Does the Alarm process ever receive three or more ticks from the Clock

process without awakening a SampleUser process in-between ticks?

In my formal notation, this would be expressed as follows:

A := [Clock(:�), thread enter, tick] . [Alarm(:�), thread received, :�] ;

B := [Alarm(:�), thread leave, sleep :�] ;

C := A _B ;

A
C
! A

C
! A

1. The user launches the POET environment, and sees the startup screen shown

in Figure 4.7.

2. Selecting the Run program option from the Functions menu (Figure 4.8), the

user enters the command-line for the compiled �C++ application.

3. The POET system identi�es the target environment, collects event-trace in-

formation, and displays a process-time diagram for the execution (Figure 4.9).

4. Examining events in the trace (and, with the middle mouse button, identi-

fying the event types and accompanying text, where appropriate), the user

constructs a predicate speci�cation with a text editor:



CHAPTER 4. IMPLEMENTATION 78

[Clock(.*),thread enter,tick].[Alarm(.*),thread received,]

-(

[Clock(.*),thread enter,tick].[Alarm(.*),thread received,]

OR

[Alarm(.*),thread leave,sleep_.*]

)->

[Clock(.*),thread enter,tick].[Alarm(.*),thread received,]

-(

[Clock(.*),thread enter,tick].[Alarm(.*),thread received,]

OR

[Alarm(.*),thread leave,sleep_.*]

)->

[Clock(.*),thread enter,tick].[Alarm(.*),thread received,]

5. Having saved the above speci�cation as 3ticks.pred, the user selects the

Find predicate option from the Functions menu, and chooses this speci�cation

(Figure 4.10).

6. The search algorithm locates an occurrence of the predicate, scrolls the display

to reveal it, and then colours the components of the match appropriately. (Be-

cause of the constraints of black-and-white reproduction, the match colouring

has been rendered as a light grey in Figure 4.11.) Thus, the user's initial ques-

tion is answered in the a�rmative.



CHAPTER 4. IMPLEMENTATION 79

Figure 4.7: The POET display on startup

7. The user selects Find again to discover whether there is another situation

in the event trace that also satis�es this predicate. POET locates a second

match and displays it in the same manner.

8. Having selected Find again a second time, the user is informed that there is

no third match (Figure 4.12).



CHAPTER 4. IMPLEMENTATION 80

Figure 4.8: The Functions menu

Figure 4.9: Execution trace for the AlarmClock program



CHAPTER 4. IMPLEMENTATION 81

Figure 4.10: Selecting a predicate-speci�cation �le

Figure 4.11: The �rst match



CHAPTER 4. IMPLEMENTATION 82

Figure 4.12: After the last match



Chapter 5

Performance

As is the case with any tool designed to search through a large amount of data, the

time and storage space required to seek a match are serious concerns. This chapter

examines the factors that a�ect performance and some techniques which have been,

or could be, applied to improve the speed of searches.

5.1 Space Used

The search facility, as it is currently implemented, requires reasonably little mem-

ory.1 As the pattern-speci�cation �le is parsed, a tree is built wherein each node

consists of the 3706-byte2 structure detailed in Tables 5.1 and 5.2. There is a cer-

1The POET system uses a signi�cant amount of secondary-storage space to record the event-

trace information. A discussion of the trade-o�s and rationales for the actual event-trace format

is beyond the scope of this thesis; the interested reader may wish to consult [24] and/or the POET

source code.

2Some compilers will add an extra 2 bytes of padding, extending the structure to the next

4-byte boundary.

83



CHAPTER 5. PERFORMANCE 84

tain amount of space wasted by this system, which could be recovered in return for

some additional code complexity and execution time:

� local.trace, local.event, and local.tse are only used in leaf nodes; if this mem-

ory were dynamically allocated, 1248 bytes could be replaced with a 4-byte

pointer.

� In leaf nodes, local.front = local.metron = local.tse.ts. Some of these 1200-

byte vector timestamps could be reconstructed from a single source when

required.

� local.trace = local.tse.event.e etrace and local.event = local.tse.event.e evcnt.

Eight bytes could be saved here; there might be a minor increase in code and

time because of additional pointer-dereferencing.

� The vector timestamps currently assume a (maximal) 300 processes in the

execution trace.3 These could be dynamically allocated.

� When a regular expression (instead of a simple text string) is encountered, its

compiled version is allocated a 200-byte bu�er; some attempt could be made

to tailor the size to that actually required by the expression.

� num traces is included only for the sake of convenience; it could be passed

between functions as an additional parameter, saving 4 bytes per node.

I have chosen, however, not to incur the (often minor) performance penalties asso-

ciated with the above re�nements, because the memory requirements to process a

reasonable predicate are already low enough to pose no practical problems.

3This static limit is governed by a compile-time constant.



CHAPTER 5. PERFORMANCE 85

Name Bytes Purpose

ntype 4 type of node (k, !, etc.)

left, right 2 � 4 pointers to left, right children

pat proc 4 pointer to textual pattern for process

pat type 4 pointer to textual pattern for event type

pat text 4 pointer to textual pattern for event text

regex proc 4 ptr. to compiled regexp for process

regex type 4 ptr. to compiled regexp for event type

regex text 4 ptr. to compiled regexp for event text

local in progress 2 search on this node currently incomplete?

front 300 � 4 front timestamp for this (sub)tree

metron 300 � 4 metron timestamp for this (sub)tree

trace 4 process index (used only for a leaf node)

event 4 event index (used only for a leaf node)

tse 1240 TS EVENT (timestamped event struct.)

restrict �rst type 4 type of restriction for �rst relevant event

last type 4 type of restriction for last relevant event

�rst, last 2 � 4 pointers to timestamps for restrictions

num traces 4 number of processes when search started

Total 3706

Table 5.1: Contents of a parse-tree node



CHAPTER 5. PERFORMANCE 86

Name Bytes Purpose

event e etype 2 event type

e 
ag 2 miscellaneous 
ags

e trace 4 source trace (process)

e ptrace 4 partner's trace (if applicable)

e evcnt 4 source event index (position within process)

e sevcnt 4 partner's event index (if applicable)

abstr base 4 base abstraction level in use

abstr cur 8 � 1 current abstraction level for 8 possible clients

e rtime 8 \real" time when event occurred

ts 300 � 4 vector timestamp

Total 1240

Table 5.2: Contents of a TS EVENT structure



CHAPTER 5. PERFORMANCE 87

Example 19

Consider the fairly complex predicate discussed in Section 4.3. This produces

a 23-node parse tree, so the basic node structures occupy 23 � 3706 = 85238

bytes. Including terminating null characters, the textual patterns for the 12

leaf nodes occupy a total of (5 � (28 + 27)) + (2 � 32) = 339 bytes. There

are a total of 14 regular expressions (1 for each process descriptor, and 2 in

event text descriptors); their compiled versions are stored in bu�ers which

total 14� 200 = 2800 bytes. The two! operators enforce restrictions on the

last relevant event for 6 nodes; the restrict.last timestamps are dynamically

allocated and occupy 11�4 = 44 bytes each, for a total of 6�44 = 264 bytes.

There are also two-sided restrictions (imposed on the limiting terms) for 10

nodes; these total 10� (2 � 44) = 880 bytes.

Thus, the total amount of memory requested for the complete parse tree is

85238 + 339 + 2800 + 264 + 880 = 89521

bytes, or roughly 87 KB. Of course, the granularity (and overhead) of memory

allocation doubtless causes the actual amount of memory used to be slightly

higher.

In the course of the search, some stack space is also required (as the parse tree

is recursively descended), and some additional temporary storage is allocated from

the heap. However, the amount of stack and heap space required to perform a

search is also quite small.

Generalization

Thus, as a rough approximation, one may consider the amount of memory required

to search for a predicate to be 4n KB, where n is the number of nodes in the



CHAPTER 5. PERFORMANCE 88

predicate's parse tree. The space requirement scales linearly as the size of the

predicate increases, and is independent of the amount of event-trace data to be

examined; also, the memory required is insigni�cant compared to the other space

requirements of any event-tracing system.

5.2 Time Used

Unlike its space requirements, the search algorithm's running time may prove to be

problematic.

As mentioned in Section 3.1.2, it is impossible at this point to accurately pre-

dict the size, architecture, and complexity of the common distributed systems which

programmers will eventually need to debug; it is, likewise, unclear how the com-

plexity of these systems will correlate with the speed and number of processors

available for debugging them. Thus, it is di�cult to guess at the threshold which

will separate acceptable performance from that which will render a search tool too

slow to be usable.

Bearing that caveat in mind, this section presents a general outline of the factors

which appear to in
uence search times.

5.2.1 The Overriding Performance Factor

It is inherent in the nature of the problem that the event trace data, because of its

size, needs to reside in secondary storage, whereas the expression being searched

for, and progress/result information, is small enough to �t in primary memory.

This is the case in the POET implementation. Thus, it seems reasonable to expect

that:



CHAPTER 5. PERFORMANCE 89

Conjecture 1

The limiting factor in a predicate search's execution is the time required to

fetch primitive events from secondary storage for examination.

Example 20

Here, a simple investigation is performed using a relatively short execution

trace. Because all components of the POET system and the application

being examined are run on the same machine, no data is transmitted between

processors; because the event-trace �le is small, it e�ectively resides in the

operating system's disk cache and no signi�cant amount of time is spent

accessing the disk. Under these \ideal" conditions, the vast majority of the

time spent on event retrievals is caused by the processing overhead associated

with inter-process communication. Thus, in this situation, the amount of

compute time consumed is an accurate indicator of the real (elapsed) time.4

Consider, yet again, the sample search session detailed in Section 4.3; this

event trace contains 323 events, distributed as shown in Table 5.3. In order

to ensure that the majority of the time spent by the POET system is a direct

result of searching for a predicate, steps 5 through 8 are repeated twenty times

before the quit option is selected. As can be seen in Figure 5.2, the amount

of processing time spent by the POET system on startup is insigni�cant

compared with the time spent searching for the predicate. (The poet process

is the event server.)

4Even if the event-trace �le is much larger, the di�erence between compute time and elapsed

time remains quite small; see Section 5.2.2 and, in particular, Figure 5.3. Compute time is used

here because the nature of the user interface, and the small size of the event-trace �le, make it

quite di�cult to obtain an accurate measurement of the elapsed time.



CHAPTER 5. PERFORMANCE 90

Trace Name Number of Events

uMain(0x200b82a8) 4

Alarm(0x200bfebc) 114

Clock(0x200b�38) 125

SampleUser(0x200c83a8) 10

SampleUser(0x200d04a8) 10

SampleUser(0x200d85a8) 10

SampleUser(0x200e06a8) 10

SampleUser(0x200e87a8) 10

SampleUser(0x200f08a8) 10

SampleUser(0x200f89a8) 10

SampleUser(0x20100aa8) 10

Total 323

Table 5.3: AlarmClock program: traces and events



CHAPTER 5. PERFORMANCE 91

The interesting portion of the debug session process' function-call pro�le,5

generated with prof(1), is depicted in Figure 5.1. Of the functions listed,

get ts event, get tse, do get event, and mf get event are all directly in-

volved in the fetching of primitive events from the disk server and timestamp-

ing them. This means that more than

3:76 + 1:62 + 1:08 + 0:68 = 7:14 seconds

or 7:14
29:25

� 24% of the debug session's processing time is spent fetching primi-

tive events.

In the same pro�le, merge timestamps, advance, and step are readily identi-

�able as part of the in-memory manipulation of the parse tree's contents. As

well, the majority of the strcmp calls are related to this same manipulation.

Thus,

(4:64 + 0:76 + 0:60) + (0:77 � ") < 6:77 seconds

or roughly 6:77
29:25 � 23% of the debug session's time is directly attributable to

manipulating in-memory structures during the search process.

Of course, this is not the full story|as is clear from Figure 5.2, the event

server (the poet process) spends almost as much time servicing requests for

5There are several irregularities in the data reported in Figure 5.1, including duplicate entries

for the mcount function (which is part of the pro�ling mechanism), a total compute time (29.25

seconds) which does not match that reported by ps, and a disproportionately large slice of time

credited to collect exit, mf rename trace and disk init (these are short functions, called once

or not at all, which should de�nitely not be using the amount of time attributed to them). These

appear to be the result of bugs in the AIX pro�ling-tool suite. It is this author's belief that the

execution times attributed to merge timestamps, get ts event, get tse, do get event, strcmp,

advance and step are, nevertheless, reasonably accurate re
ections of reality.



CHAPTER 5. PERFORMANCE 92

Name %Time Seconds Cumsecs #Calls msec/call

.merge_timestamps 15.9 4.64 4.64 31800 0.1459

.get_ts_event 12.9 3.76 8.40 133894 0.0281

.__mcount 11.1 3.24 11.64

._moveeq 9.6 2.80 14.44

.get_tse 5.5 1.62 16.06 160161 0.0101

.__mcount 5.0 1.46 17.52

.do_get_event 3.7 1.08 18.60 232479 0.0046

.update_found_displa 3.2 0.95 19.55 161 5.90

.disclaim_free_y 2.8 0.82 20.37

.strcmp 2.7 0.78 21.15

.advance 2.6 0.76 21.91 151700 0.0050

.mf_get_event 2.3 0.68 22.59 232490 0.0029

.step 2.1 0.60 23.19 81960 0.0073

.collect_exit 2.0 0.59 23.78 1 590.

.free_y 1.8 0.53 24.31 68204 0.0078

.mf_rename_trace 1.0 0.28 24.59

.malloc_y 0.9 0.25 24.84 76341 0.0033

.disk_init 0.8 0.23 25.07 1 230.

.write 0.7 0.20 25.27 61800 0.0032

[...]

.redraw 0.0 0.00 29.25 87 0.0

Figure 5.1: (Partial) output from `prof dbg session'



CHAPTER 5. PERFORMANCE 93

After Startup:

cejaekl 7006 29530 0 20:59:00 pts/18 0:00 ts_chkpt

cejaekl 29530 33448 0 20:58:58 pts/18 0:00 poet

cejaekl 31068 29530 0 20:59:00 pts/18 0:01 dbg_session

After Twenty Complete Searches:

cejaekl 7006 29530 0 20:59:00 pts/18 0:00 ts_chkpt

cejaekl 29530 33448 2 20:58:58 pts/18 0:41 poet

cejaekl 31068 29530 3 20:59:00 pts/18 0:50 dbg_session

Figure 5.2: (Partial) output from the `ps' command

primitive events as the debug session does on its entire search process. Ad-

ditionally, if these two POET components are running on di�erent machines,

then there could also be signi�cant communication delays which would slow

down requests to retrieve primitive events.

The time required to process a predicate search appears, indeed, to be over-

whelmingly in
uenced by the time required to fetch primitive events from

secondary storage. This result is compatible with Conjecture 1.

In the future, the amount of data that the event server stores per event will

probably be reduced (perhaps from the current 40 bytes to 20). This would improve

performance somewhat, because a greater number of primitive events could be

fetched in a single (block) request; it is, nonetheless, likely that the time spent

fetching events will remain the dominant performance factor.



CHAPTER 5. PERFORMANCE 94

5.2.2 Test Runs

As discussed above, one would expect the search time to be proportional to the

number of events which are fetched from secondary storage.

In reality, the situation is more complex. In order to reduce the number of (ex-

pensive) event requests that must be issued, it is common to (and POET does) fetch

events from secondary storage in blocks, returning a group of events, in sequence,

on the requested trace. This optimization means that events can be retrieved more

quickly if they are requested in sequence, but there is a signi�cant performance de-

crease when random-access requests are made. As well, requests for timestamps can

have a large e�ect on the time required to complete a search. Because of the expense

involved in calculating timestamps, POET makes a substantial e�ort to cache and

re-use them; however, if too many timestamps (or even a few timestamps for events

which are widely separated) are requested, then the time required to compute the

timestamps a�ects substantially the running time of the search.

The following test runs provide empirical evidence which supports this analysis.

Predicates

The seven test predicates are listed in Table 5.6. The �rst two locate what hap-

pens to be the last event recorded for the event server and checkpoint processes

respectively. Predicate III scans the traces for both debug session processes, one

after the other, and locates the process termination events which are the last events

recorded for both processes.

Predicate IV attempts to �nd an exit event in the event server process which is

concurrent with a start event in the checkpoint process; no such combination exists,

so the search must fail.



CHAPTER 5. PERFORMANCE 95

Number Predicate

I [poet,exit,]

II [ts chkpt,exit,]

III [dbg session,exit,]

IV [poet,exit,] k [ts chkpt,start,]

V [poet,create,] k [dbg session,exit,]

VI [dbg session,exit,] k [poet,create,]

VII [dbg session,exit,] k [ts chkpt,wait for events,]

Table 5.4: Predicates used for performance analysis

There are three create events in the event server process, each of which cor-

responds to the spawning of one of the other three processes. None of these is

concurrent with the exit event for either debug session process, so Predicates V

and VI are both unsatis�able.

Slightly less than half of the events recorded for the checkpoint process are of

type wait for events. None of these, however, are concurrent with either debug

session's exit event. Thus, while the second component of Predicate VII has many

matches, the complete predicate cannot be matched.

Methodology

All of these tests were performed on an otherwise unloaded 66 MHz IBM RS/6000

250, based on a self-debug event �le6 which contains 175187 events divided among

four processes as shown in Table 5.5. Note that each process begins with an event

6One instance of POET can be used to examine another instance's behaviour. The poet

process described here is the event server.



CHAPTER 5. PERFORMANCE 96

Trace Name Number of Events

poet 87593

dbg session 7108

ts chkpt 79598

dbg session 888

Table 5.5: Test data: traces and events

of type start, and terminates with an event of type exit.

After the startup of POET and the loading of the event �le, the checkpoint

process was allowed to timestamp all of the events and save checkpoints for later

use by the debug session's timestamping algorithm; this required 20 CPU seconds.

Then, a search was performed for the �rst predicate and the relevant statistical

information recorded. The search was repeated a further four times; the values

reported below are averages over �ve trials.7 In order to provide a clearer view of

the algorithm's behaviour, each search was examined with the relevancy restriction

feature (see Section 4.2.7) disabled, and again with that feature enabled.

Miscellaneous Overhead

Table 5.6 lists the observed CPU time used by the POET system and the corre-

sponding real elapsed time (all �gures are in seconds, and represent the average over

�ve trials); the �rst set of data is the result of searches without relevancy restric-

7Almost no variation was observed among searches for the same predicate, with the exception

of an occasional and minor improvement in the number of timestamps retrieved from caches on

the �nal four iterations.



CHAPTER 5. PERFORMANCE 97

0 10 20 30 40 50

0

10

20

30

40

50

60

Elapsed T ime vs.
Computation T ime

Computation T ime (sec)

y = -0.08 + 1.09x  
r^2 = 0.99945

Figure 5.3: Observed execution times correlate well with CPU seconds

tions, and the second set re
ects the same searches with these restrictions enabled.8

As the graph and linear-regression curve-�t in Figure 5.3 make clear, the overhead

involved in waiting for inter-process communication and other operating-system

tasks is nearly constant and roughly 9%. The good correlation (r2 � 0:99945)

provides some measure of assurance that outside in
uences are constant between

searches for di�erent predicates, and may be safely excluded from further consid-

eration in the analysis of these test runs.

8The reasons for the di�erence between these two sets of numbers are discussed below.



CHAPTER 5. PERFORMANCE 98

(Relevancy Restrictions Disabled)

Predicate Compute time Compute time Compute time Elapsed

(event server) (debug session) (total) time

I 2.0 12.6 14.6 15.4

II 1.6 11.4 13.0 14.0

IIIa 0.2 1.2 1.4 1.0

IIIb 0.0 0.0 0.0 0.0

IV 3.6 24.2 27.8 30.0

V 2.6 16.0 18.6 20.6

VI 4.2 26.2 30.4 33.0

VII 7.8 38.2 46.0 50.4

(Relevancy Restrictions Enabled)

Predicate Compute time Compute time Compute time Elapsed

(event server) (debug session) (total) time

I 1.8 12.8 14.6 15.4

II 1.8 11.4 13.2 14.2

IIIa 0.2 1.0 1.2 1.2

IIIb 0.0 0.2 0.2 0.0

IV 1.8 12.8 14.6 16.0

V 4.0 18.4 22.4 24.0

VI 0.4 1.0 1.4 2.0

VII 0.2 1.2 1.4 2.0

Table 5.6: CPU seconds used and real time elapsed



CHAPTER 5. PERFORMANCE 99

Performance Data

Tables 5.7 and 5.8 list the observed statistical information with relevancy restric-

tions disabled and enabled, respectively. Each table contains two rows for Predi-

cate III, one for the time to �nd the �rst match, and another for the time required

to continue the search until the second match is located.

Generating a timestamp can be a time-consuming operation, involving, in the

worst case, the retrieval of checkpoint information and a signi�cant number of

primitive events that are causally between the checkpoint and the event whose

timestamp is desired. The debug session process maintains a large, multi-level

cache in an attempt to avoid as many timestamp calculations as possible. Thus,

the Timestamp requests column indicates the number of primitive events whose

timestamps were requested,9 whereas the Timestamp calculations column indicates

only the number of such requests that could not be satis�ed from the cache.

The number of requests to fetch a primitive event is listed in the Event requests

column. For Predicates I, II and III, one would expect this to be the number

of primitive events in the appropriate process' trace, because the search algorithm

scans each trace from beginning to end, and only stops on a match at the very end of

the trace. Predicates IV, V, VI and VII all involve concurrent composition, and all

fail to match any set of events within the execution trace; in the absence of relevancy

restrictions, the search algorithm examines every event in all processes appropriate

for the �rst component and then, for every match thereto, examines every event in

all processes appropriate for the second component. Thus, for example, the search

9Some of these requests occur during the display algorithm's \update" of the process-trace di-

agram which follows a search, successful or otherwise; the actual number of timestamps requested

by the search algorithm is less than or equal to this number.



CHAPTER 5. PERFORMANCE 100

Predicate Timestamp Timestamp Event Expected Compute

requests calculations requests event req.s time (sec)

I 13.0 0.4 87603.6 87593 14.6

II 13.0 0.0 79606.0 79598 13.0

IIIa 16.2 0.0 7118.4 7108 1.4

IIIb 17.0 0.0 899.8 888 0.0

IV 2.0 0.0 167192.0 167191 27.8

V 9.0 0.2 111625.6 111581 18.6

VI 8.0 0.0 183186.0 183182 30.4

VII 79260.0 79252.2 591580.0 167192 46.0

Table 5.7: Performance with relevancy restrictions disabled

Predicate Timestamp Timestamp Event Expected Compute

requests calculations requests event req.s time (sec)

I 13.0 0.2 87603.4 87593 14.6

II 13.0 0.0 79606.0 79598 13.2

IIIa 16.2 0.0 7118.4 7108 1.2

IIIb 17.0 0.0 899.8 888 0.2

IV 2.0 0.0 87594.0 � 167191 14.6

V 66.0 32.0 172721.0 � 111581 22.4

VI 5.0 0.0 8011.0 � 183182 1.4

VII 4.0 0.0 8000.0 � 167192 1.4

Table 5.8: Performance with relevancy restrictions enabled



CHAPTER 5. PERFORMANCE 101

for Predicate V should generate

87593 + 3(7108 + 888) = 111581 event requests.10

The introduction of relevancy restrictions should reduce the number of events ex-

amined. When the number of events requested is signi�cantly above expectations,

the di�erence is caused by the actions of the timestamping algorithm.

Conjecture 2

The time required to perform a search is proportional to the number of prim-

itive events examined.

Is this conjecture a valid re
ection of the algorithm's performance? The graph

in Figure 5.4 (which ignores Predicate VII) suggests that it is, and that the time

required to complete a search is roughly 0:18 seconds per 1000 events examined.

However, none of the searches included in this graph requires any signi�cant cal-

culation of timestamps. The algorithm requests only one timestamp (that of the

primitive event which is matched) for Predicates I, II, IIIa and IIIb, two time-

stamps (one for each of the unique matches to the components) for Predicate IV,

and four timestamps for Predicates V and VI. In the above cases, the multi-level

caching which the POET system employs is virtually able to eliminate the need to

calculate timestamps from scratch.

Now, consider the graph in Figure 5.5, which re
ects the entire contents of

Table 5.7. The result for Predicate VII is obviously not on the line of best �t from

Figure 5.4. The factor that di�erentiates this case from the others is the number

of timestamps that must be calculated; because the component

10Recall that there are three create events in the poet trace. Note that reordering the terms in

a predicate can a�ect the search time (this will be discussed in Section 5.3, q.v.).



CHAPTER 5. PERFORMANCE 102

0 50000 100000 150000 200000

0

10

20

30

40

Elapsed T ime vs. Number
of Event Requests

Number of Event Requests

y = -0.2 + 1.8 * 10^(-4)x   
r^2 = 0.99953

Figure 5.4: Predicates I through VI, relevancy restrictions disabled



CHAPTER 5. PERFORMANCE 103

0 100000 200000 300000 400000 500000 600000

0

10

20

30

40

50

60

Elapsed T ime vs. Number
of Event Requests

Number of Event Requests

Figure 5.5: Predicates I through VII, relevancy restrictions disabled

[ts chkpt,wait for events,]

matches many events, many timestamps are requested, and the resulting timestamp

calculations, in turn, examine a signi�cant number of primitive events. Perhaps

because each timestamp calculation requests events that are in close proximity

to one another, the bulk processing and caching features of the event-retrieval

mechanism are able to provide a certain performance improvement.

Finally, consider what happens when the relevancy-restriction feature is enabled

(see Figure 5.6). For the simple predicates which involve only a single event (I, II

and III), the search algorithm operates in essentially the same manner, and per-

formance is similar. For the more complex predicates which involve a concurrent



CHAPTER 5. PERFORMANCE 104

0 50000 100000 150000 200000

0

5

10

15

20

25

30

Elapsed T ime vs. Number
of Event Requests

Number of Event Requests

y = 1.1 + 1.5 * 10^(-4)x
r^2 = 0.97104

Figure 5.6: Predicates I through VII, relevancy restrictions enabled

composition of events (IV, V, VI and VII), there is a reduction in the number of

primitive events that the search algorithm requests in its attempts to match the

second component of the predicate. However, because the relevancy-restriction fea-

ture may perform a binary search which requires timestamps from vastly disparate

regions of the event trace, the timestamp-caching mechanism can be largely circum-

vented, and the resulting timestamp calculations may precipitate a huge increase

in the number of primitive events actually examined. Thus, while the relevancy

restrictions can result in a speedup (e.g., Predicates IV, VI, and VII), they can also

result in an overall slowdown of the search, (e.g., Predicate V).

As is the case without relevancy restrictions, the search which involves a sub-



CHAPTER 5. PERFORMANCE 105

0 100000 200000 300000 400000 500000 600000

0

10

20

30

40

50

60 no rel.restr.
w/ rel.restr.

Elapsed T ime vs. Number
of Event Requests

Number of Event Requests

Figure 5.7: Combined data, with and without relevancy restrictions

stantial amount of timestamp-calculation requires somewhat less time per event

request issued. This disparity is visible in Figure 5.7. Those searches which do not

require a signi�cant amount of timestamp-calculation (in this graph, all searches

except for those which took 22.4 seconds and 46.0 seconds to execute) take roughly

0:18 seconds per thousand event requests, while the rest take less time per request

because some of those requests are for timestamp calculations.

5.2.3 Conclusions

The above data suggest that the time required to complete a search is equal to

c1f + c2g, where f is the expected number of primitive events to be examined, g

is the number of timestamp requests issued, and c1 and c2 are constants such that



CHAPTER 5. PERFORMANCE 106

c1 � c2. Thus,

Conjecture 3

The running time of the search algorithm is O(f + g).

Since the employment of relevancy restrictions can both decrease f and increase

g, it may either improve or degrade performance.

The values for f and g are both O(nt), where n is the size of the event-trace �le

and t is the size of the predicate. It is important to note, however, that this expo-

nential time bound can be substantially avoided through the judicious construction

of predicates.

5.3 Improving Running Time

As the discussion above suggests, it may be necessary to speed up the search process.

This section sketches some techniques which might assist in the attainment of that

goal.

� Index by event type. If a su�cient amount of reasonably fast storage is

available, a linked list could be maintained for each event type within each

process, so that the occurrences of that type of event could be quickly enu-

merated. This would, of course, require a pre-processing pass over the event-

trace data. In case the memory requirements were too severe, a compromise

approach could employ indexing on some event types and/or processes in

conjunction with a query engine which would search for indexed terms before

turning to other terms. Alternatively, just recording the �rst and last occur-

rence of each event type on each trace could provide a signi�cant speedup

without much additional space.



CHAPTER 5. PERFORMANCE 107

� Employ special knowledge about event types. All of the predicates

used in the test runs described above are trivially veri�able by an informed

human, because people know that start events can only occur as the �rst event

recorded for a process, and that exit events must be the last. Knowledge of

the special qualities that accompany events like these could be put to good

use by the search algorithm.

� Search for less-frequent terms �rst. In the test runs above, Predicate VII

[dbg session, exit, ] k [ts chkpt, wait for events, ]

can be searched for in a reasonable length of time. On the other hand, a

search for the predicate

[ts chkpt, wait for events, ] k [dbg session, exit, ]

fails to return an answer after twenty minutes. In the �rst case, the trace for

debug session is searched once and then the trace for the checkpoint process

is also searched for a wait for events event which is concurrent with the one

exit event in the trace for debug session. In the second case, the trace for

the checkpoint process is searched once and, for each of the many thousands

of events of type wait for events, the debug session trace is searched for an

exit event which is concurrent with that wait for events event. Obviously,

some heuristic attempt to identify which terms occur less frequently and then

search for matches to those terms �rst could yield an impressive performance

improvement.

These suggestions can be grouped under the general title of query optimization.

Like its homonym in database retrieval, the possible techniques are numerous and



CHAPTER 5. PERFORMANCE 108

the details of their application complex; a full discussion of this area is beyond the

scope of this thesis.



Chapter 6

Conclusions and Future Directions

6.1 Summary of the Problem

While the idea of building distributed systems is not a new one, recent developments

in hardware technology suggest that their use will soon be both a sound economic

move and a performance-driven necessity. Developing software for such systems

remains a signi�cant stumbling-block to their widespread acceptance; this is largely

because of the di�culty of debugging distributed applications. In the past few

years, substantial progress has been made toward the provision of a distributed

extension of the traditional sequential-debugging tool suite; the development of a

solid event-predicate-detection facility would �ll a large gap that remains.

6.2 Thesis Contributions

To provide a solid foundation for event-detection predicates, precedence relations

(! and ;) are de�ned for compound events and, for the recommended relation

109



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 110

(!), two alternative vector-timestamp-calculation algorithms and corresponding

precedence tests are developed and proven correct.

Five goals, which an ideal predicate-detection system should meet, are enumer-

ated: detecting phase transitions and violations of mutual exclusion, locating sub-

routines and asymmetrical communication patterns, and identifying performance

bottlenecks. These provide a new framework for comparison within which the

previous work in this area is evaluated. Based on this evaluation, a new predicate-

speci�cation syntax is introduced, heavily in
uenced by that of Haban and Weigel

[20], but with the important extensions of event-speci�cation wildcards and send-

receive pairing.

A prototypical implementation has been completed, and various issues which

were dealt with in the course of its construction are discussed. Finally, the fac-

tors a�ecting the performance of this prototypical algorithm are investigated, and

several enhancements which could improve performance are suggested.

6.3 Future Work

As is discussed in Chapter 5, the time complexity of the search algorithm may

prove to be a problem; it would be useful to pursue a closer investigation of the

trade-o�s involved with the various performance-enhancing techniques sketched in

Section 5.3. Consideration should also be given to the issues (performance and

otherwise) involved in employing this predicate-recognition engine as an online

monitor in addition to its current use as a post-mortem analysis tool.

There is much that could be done to improve the expressive control and ease of

speci�cation provided by the predicate-de�nition language. The additions sketched



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 111

in Section 3.3.3 (repetition operators, a \not yet" operator, named subblocks, bind-

ing and real-time information) may provide a good starting-point. In addition, the

construction of \libraries" of commonly-used subblocks could ease the development

of speci�cations in much the same way as \include �les" facilitate the task of pro-

gramming with a macro-assembler.

More fundamentally, it can be argued that the current de�nition language, which

uses single, primitive events as its fundamental building blocks, is at too low a level

to permit the construction of complex predicates with a reasonable amount of e�ort.

While the system presented in this thesis provides a useful foundation, it might be

appropriate to construct a higher-level language on top of it, much as many modern,

high-level languages are built on top of an assembly language.

6.4 A Final Word

This is an exciting time in the computer-systems �eld; the world is embracing

a rapid shift in favour of distributed architectures, thus placing new strains on

the software developers. It is this author's hope that the prototypical predicate-

recognition tool, and the associated background information presented in this the-

sis, will provide a basis for fertile discussions between programming professionals

and those researching debugging techniques. Perhaps, after a suitable iterative-

re�nement process, this tool may provide an e�ective resource in the development

of distributed applications.



Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, Reading, Massachusetts, 1988.

[2] John Backus. The history of FORTRAN I, II, and III. Annals of the History

of Computing, 1(1):21{37, 1979.

[3] A. A. Basten. Event abstraction in modeling distributed computations. In

K. Ecker and M. Kr�amer, editors, Workshop on Parallel Processing, Proceed-

ings, pages 46{65, Lessach, Austria, September 1993.

[4] A. A. Basten. Hierarchical event-based behavioral abstraction in interactive

distributed debugging: A theoretical approach. Master's thesis, Eindhoven

University of Technology, Department of Mathematics and Computing Science,

Eindhoven, The Netherlands, 1994.

[5] T. Basten, T. Kunz, J. P. Black, M. H. Co�n, and D. J. Taylor. Time and the

order of abstract events in distributed computations. Computer Science Note

94/06, Eindhoven University of Technology, Department of Mathematics and

Computing Science, Eindhoven, The Netherlands, February 1994.

112



BIBLIOGRAPHY 113

[6] Peter C. Bates and Jack C. Wileden. High-level debugging of distributed

systems: The behavioural abstraction approach. The Journal of Systems and

Software, 3(4):255{264, December 1983.

[7] Peter A. Buhr. Introduction to concurrent programming using �C++. Forth-

coming.

[8] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining

global states of distributed systems. ACM Transactions on Computer Systems,

3(1):63{75, February 1985.

[9] Wing Hong Cheung. Process and Event Abstraction for Debugging Distributed

Programs. PhD thesis, University of Waterloo, Department of Computer Sci-

ence, Waterloo, Ontario, Canada, 1989.

[10] Hsien-Kuang Chiou and Willard Korfhage. Detecting ENF event predicates in

distributed systems. Unpublished manuscript. Computer Science Department,

Polytechnic University, Brooklyn, NY 11201.

[11] Hsien-Kuang Chiou and Willard Korfhage. Enhancing distributed event pred-

icate detection algorithms. Unpublished manuscript. Computer Science De-

partment, Polytechnic University, Brooklyn, NY 11201.

[12] Hsien-Kuang Chiou and Willard Korfhage. E�cient global event predicate de-

tection. In 14th International Conference on Distributed Computing Systems,

pages 642{649, 1994.

[13] Gordon V. Cormack. An LR substring parser for noncorrecting syntax error

recovery. Proceedings of the ACM SIGPLAN 1989 Conference on Program-

ming Language Design and Implementation, SIGPLAN Notices, 24(7):161{

169, 1989.



BIBLIOGRAPHY 114

[14] Colin J. Fidge. Timestamps in message-passing systems that preserve the

partial ordering. In Proceedings of the 11th Australian Computer Science Con-

ference, pages 56{66, Brisbane, 1988.

[15] Colin J. Fidge. Dynamic Analysis of Event Orderings in Message-Passing

Systems. PhD thesis, Australian National University, Department of Computer

Science, Canberra, Australia, 1989.

[16] Colin J. Fidge. Logical time in distributed computing systems. IEEE Com-

puter, 24(8):28{33, August 1991.

[17] Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates in

distributed programs. IEEE Transactions on Parallel and Distributed Systems,

5(3):299{307, March 1994.

[18] S. Gill. Parallel programming. The Computer Journal, 1(1):2{8, April 1958.

[19] Virgil D. Gligor and Susan H. Shattuck. Deadlock detection in distributed sys-

tems. IEEE Transactions on Software Engineering, SE-6(5):435{440, Septem-

ber 1980.

[20] Dieter Haban and Wolfgang Weigel. Global events and global breakpoints in

distributed systems. In Proceedings of the 21st Annual Hawaii International

Conference on System Science, pages 166{175, 1988.

[21] Wenwey Hseush and Gail E. Kaiser. Modeling concurrency in parallel debug-

ging. ACM SIGPLAN Notices, 25(3):11{20, 1990.

[22] S. C. Johnson and M. E. Lesk. Language development tools. The Bell System

Technical Journal, 57(6):2155{2175, July-August 1978.



BIBLIOGRAPHY 115

[23] Marc Khouzam. Single stepping in event visualization tools for distributed

applications. Master's thesis, Department of Computer Science, University of

Waterloo, Ontario, Canada, 1996.

[24] Thomas Kunz. Abstract Behaviour of Distributed Executions with Applications

to Visualization. PhD thesis, Fachbereich Informatik, Technische Hochschule

Darmstadt, 1994.

[25] Thomas Kunz and David J. Taylor. Visualizing PVM executions. In Proceed-

ings of the 3rd PVM Users' Group Meeting, Pittsburgh, May 1995.

[26] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 27(7):558{565, July 1978.

[27] Keith Marzullo and Susan Owicki. Maintaining time in a distributed system.

Operating Systems Review, 19(3):44{54, July 1985.

[28] F. Mattern. On the relativistic structure of logical time in distributed sys-

tems. In M. Cosnard et al., editors, Parallel and Distributed Algorithms, pages

215{226. Elsevier Science Publishers B.V., Amsterdam, North-Holland, The

Netherlands, 1989.

[29] Barton P. Miller and Jong-Deok Choi. Breakpoints and halting in distributed

programs. In 8th International Conference on Distributed Computing Systems,

pages 316{323, 1988.

[30] Oystein Ore. Theory of graphs. American Mathematical Society Colloquium

Publications, 38, 1962.

[31] M. Krish Ponamgi, Wenwey Hseush, and Gail E. Kaiser. Debugging multi-

threaded programs with MPD. IEEE Software, pages 37{43, May 1991.



BIBLIOGRAPHY 116

[32] Reinhard Schwartz and Friedemann Mattern. Detecting causal relationships in

distributed computations: In search of the holy grail. Distributed Computing,

7(3):149{174, 1994.

[33] Ilene Seelemann. Application of event-based debugging techniques to object-

oriented executions. Master's thesis, University of Waterloo, Department of

Computer Science, Waterloo, Ontario, Canada, 1995.

[34] Michiel F. H. Seuren. Design and implementation of an automatic event ab-

straction tool. Master's thesis, University of Waterloo, Department of Com-

puter Science, Waterloo, Ontario, Canada, 1996.

[35] James Alexander Summers. Precedence-preserving abstraction for distributed

debugging. Master's thesis, University of Waterloo, Department of Computer

Science, Waterloo, Ontario, Canada, 1991.

[36] Andrew S. Tanenbaum. Structured Computer Organization. Prentice-Hall,

third edition, 1990.

[37] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, 1995.

[38] David J. Taylor. A prototype debugger for Hermes. In Proceedings of the 1992

CAS Conference, volume 1, pages 29{42, 1992.

[39] David J. Taylor. The use of process clustering in distributed-system event

displays. In Proceedings of the 1993 CAS Conference, pages 505{512, 1993.

[40] David J. Taylor. Event displays for debugging and managing distributed sys-

tems. In International Workshop on Network and Systems Management, pages

112{124, Kyongju, Korea, August 1995.



BIBLIOGRAPHY 117

[41] David J. Taylor, Thomas Kunz, and James P. Black. Achieving target-system

independence in event visualization. In CD-ROM Proceedings of the 1995 CAS

Conference, 1995.

[42] J. H. Wilkinson. The Pilot ACE. In Automatic Computation: Proceedings of a

Symposium held at the National Physical Laboratory, pages 5{17, March 1953.

[43] Yuh Ming Yong. Replay and distributed breakpoints in an OSF DCE en-

vironment. Master's thesis, Department of Computer Science, University of

Waterloo, Ontario, Canada, 1995.

[44] Je�rey S. Young. Steve Jobs: The Journey is the Reward. Lynx Books, 41

Madison Avenue, New York, New York, 10010, 1988.

[45] Ivan Y. K. Yu. Integrating event visualization and sequential debugging. Mas-

ter's essay, University of Waterloo, Department of Computer Science, Water-

loo, Ontario, Canada, 1996.



NOTATION 118

Symbol ASCII Meaning see page(s)

: NOT logical negation

^ AND logical conjunction

_ OR logical disjunction

, <=> bidirectional implication (i�)

n set subtraction
vec

� vector � 13
act
< < over active() 22

a a primitive event

A A compound event 17

jAj |A| cardinality of A 25

pa proc(a) 10

Ta timestamp 11, 13, 15, 17

TA:front front timestamp 19

TA:metron metron timestamp 22

TA:back back timestamp 19

! --> sequential composition 9, 19

k || concurrent composition 9

; ~~> alternative ! 24

oo fg alternative k 24

A
B
! C A-(B)->C limited ! 45

A
B
; C A~(B)~>C limited ; 45

x� x* repetition of x 33, 54

A@ A@ alternative repetition 54

A
B
� AfBg* repetition with limiter 55

A
B

@ AfBg@ alternative repetition with limiter 55


